Mots-clés : quasiclassical approximation, $\nu$-zeros
@article{SIGMA_2021_17_a56,
author = {Yuri Krynytskyi and Andrij Rovenchak},
title = {Asymptotic {Estimation} for {Eigenvalues} in the {Exponential} {Potential} and for {Zeros} of $K_{{\rm i}\nu}(z)$ with {Respect} to {Order}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a56/}
}
TY - JOUR
AU - Yuri Krynytskyi
AU - Andrij Rovenchak
TI - Asymptotic Estimation for Eigenvalues in the Exponential Potential and for Zeros of $K_{{\rm i}\nu}(z)$ with Respect to Order
JO - Symmetry, integrability and geometry: methods and applications
PY - 2021
VL - 17
UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a56/
LA - en
ID - SIGMA_2021_17_a56
ER -
%0 Journal Article
%A Yuri Krynytskyi
%A Andrij Rovenchak
%T Asymptotic Estimation for Eigenvalues in the Exponential Potential and for Zeros of $K_{{\rm i}\nu}(z)$ with Respect to Order
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a56/
%G en
%F SIGMA_2021_17_a56
Yuri Krynytskyi; Andrij Rovenchak. Asymptotic Estimation for Eigenvalues in the Exponential Potential and for Zeros of $K_{{\rm i}\nu}(z)$ with Respect to Order. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a56/
[1] Abramowitz M., Stegun I. A. (eds.), Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1966 | MR
[2] Ahmed Z., Ghosh D., Kumar S., Turumella N., “Solvable models of an open well and a bottomless barrier: one-dimensional exponential potentials”, Eur. J. Phys., 39 (2018), 025404, 10 pp., arXiv: 1706.05275 | DOI | Zbl
[3] Amore P., Fernández M. F., “Accurate calculation of the complex eigenvalues of the Schrödinger equation with an exponential potential”, Phys. Lett. A, 372 (2008), 3149–3152, arXiv: 0712.3375 | DOI | Zbl
[4] Bagirova S. M., Khanmamedov A. K., “On zeros of the modified Bessel function of the second kind”, Comput. Math. Math. Phys., 60 (2020), 817–820 | DOI | MR | Zbl
[5] Balogh C. B., “Asymptotic expansions of the modified Bessel function of the third kind of imaginary order”, SIAM J. Appl. Math., 15 (1967), 1315–1323 | DOI | MR | Zbl
[6] Bethe H. A., Bacher R. F., “Nuclear physics A Stationary states of nuclei”, Rev. Mod. Phys., 8 (1936), 82–229 | DOI
[7] Bhaduri R. K., Sprung D. W.L., Suzuki A., When is the lowest order WKB quantization exact?, Can. J. Phys., 84 (2006), 573–581, arXiv: gr-qc/0508107 | DOI
[8] Campbell J., “Determination of $\nu$-zeros of Hankel functions”, Comput. Phys. Comm., 32 (1984), 333–339 | DOI
[9] Cochran J. A., “The zeros of Hankel functions as functions of their order”, Numer. Math., 7 (1965), 238–250 | DOI | MR | Zbl
[10] Cochran J. A., Hoffspiegel J. N., “Numerical techniques for finding $\nu $-zeros of Hankel functions”, Math. Comp., 24 (1970), 413–422 | DOI | MR | Zbl
[11] Corless R. M., Gonnet G. H., Hare D. E.G., Jeffrey D. J., Knuth D. E., “On the Lambert $W$ function”, Adv. Comput. Math., 5 (1996), 329–359 | DOI | MR | Zbl
[12] Curtis L. J., Ellis D. G., “Use of the Einstein–Brilloui–Keller action quantization”, Amer. J. Phys., 72 (2004), 1521–1523 | DOI
[13] Dunster T. M., “Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter”, SIAM J. Math. Anal., 21 (1990), 995–1018 | DOI | MR | Zbl
[14] Ferreira E. M., Sesma J., “Zeros of the Macdonald function of complex order”, J. Comput. Appl. Math., 211 (2008), 223–231, arXiv: math.CA/0607471 | DOI | MR | Zbl
[15] Guo K.-X., Xiao B., Zhou Y., Zhang Z., “Polaron effects on the third-harmonic generation in asymmetrical semi-exponential quantum wells”, J. Optics, 17 (2015), 035505, 6 pp. | DOI
[16] Guo Z.-K., Zhang Y.-Z., “Interacting phantom energy”, Phys. Rev. D, 71 (2005), 023501, 5 pp., arXiv: 1910.06796 | DOI
[17] Johansson F., “Computing the Lambert $W$ function in arbitrary-precision complex interval arithmetic”, Numer. Algorithms, 83 (2020), 221–242, arXiv: 1705.03266 | DOI | MR | Zbl
[18] Kamali V., Motaharfar M., Ramos R. O., “Warm brane inflation with an exponential potential: a consistent realization away from the swampland”, Phys. Rev. D, 101 (2020), 023535, 13 pp., arXiv: 1910.06796 | DOI | MR
[19] Ma S.T., “Redundant zeros in the discrete energy spectra in Heisenberg's theory of characteristic matrix”, Phys. Rev., 69 (1946), 668–668 | DOI | MR
[20] Magnus W., Kotin L., “The zeros of the Hankel function as a function of its order”, Numer. Math., 2 (1960), 228–244 | DOI | MR | Zbl
[21] Migdal A. B., Krainov V., Approximation methods in quantum mechanics, W.A. Benjamin, Inc., New York – Amsterdam, 1969
[22] Pisanty E., Answer to: Eigenvalues and eigenfunctions of the exponential potential $V(x)=\exp(|x|)$, , 2016 https://physics.stackexchange.com/questions/47128/eigenvalues-and-eigenfunctions-of-the-exponential-potential-vx-expx
[23] Sasaki R., Znojil M., “One-dimensional Schrödinger equation with non-analytic potential $V(x)=-g^2\exp (-|x|)$ and its exact Bessel-function solvability”, J. Phys. A: Math. Theor., 49 (2016), 445303, 12 pp., arXiv: 1605.07310 | DOI | MR | Zbl
[24] Sun Y., Xiao J.-L., “Coherence effects of the strongly-coupled optical polaron-level qubit in a quantum well with asymmetrical semi-exponential potential”, Superlattices Microstruct., 145 (2020), 106617, 7 pp. | DOI
[25] Vakarchuk I., Quantum mechanics, Lviv University Press, Lviv, 2012
[26] Yesilgul U., Ungan F., Sakiroglu S., Sari H., Kasapoglu E., Sökmen I., “Nonlinear optical properties of a semi-exponential quantum wells: effect of high-frequency intense laser field”, Optik, 185 (2019), 311–316 | DOI