Mots-clés : Heun class equations, isomonodromy deformations, Painlevé equations.
@article{SIGMA_2021_17_a55,
author = {Jan Derezi\'nski and Artur Ishkhanyan and Adam Latosi\'nski},
title = {From {Heun} {Class} {Equations} to {Painlev\'e} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a55/}
}
TY - JOUR AU - Jan Dereziński AU - Artur Ishkhanyan AU - Adam Latosiński TI - From Heun Class Equations to Painlevé Equations JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a55/ LA - en ID - SIGMA_2021_17_a55 ER -
Jan Dereziński; Artur Ishkhanyan; Adam Latosiński. From Heun Class Equations to Painlevé Equations. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a55/
[1] Chiang Y.-M., Law C.-K., Yu G.-F., Invariant subspaces of biconfluent Heun operators and special solutions of Painlevé IV, arXiv: 1905.10046
[2] Dereziński J., “Hypergeometric type functions and their symmetries”, Ann. Henri Poincaré, 15 (2014), 1569–1653, arXiv: 1305.3113 | DOI | MR | Zbl
[3] Dereziński J., “Group-theoretical origin of symmetries of hypergeometric class equations and functions”, Complex Differential and Difference Equations, Proceedings of the School and Conference Held (Bedlewo, Poland, September 2–15, 2018), eds. G. Filipuk, A. Lastra, S. Michalik, Y. Takei, H. Żoła̧dek, De Gruyter Proceedings in Mathematics, Berlin, 2020, 3–128, arXiv: 1906.03512 | DOI | Zbl
[4] Dereziński J., Wrochna M., “Exactly solvable Schrödinger operators”, Ann. Henri Poincaré, 12 (2011), 397–418, arXiv: 1009.0541 | DOI | MR | Zbl
[5] Filipuk G., Ishkhanyan A., Dereziński J., “On the derivatives of the Heun functions”, J. Contemp. Math. Anal., 55 (2020), 200–207, arXiv: 1907.12692 | DOI | MR | Zbl
[6] Fuchs R., “Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen”, Math. Ann., 63 (1907), 301–321 | DOI | MR | Zbl
[7] Gambier B., “Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes”, Acta Math., 33 (1910), 1–55 | DOI | MR
[8] Heun K., “Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit vier Verzweigungspunkten”, Math. Ann., 33 (1888), 161–179 | DOI | MR
[9] Ince E. L., Ordinary differential equations, Dover Publications, New York, 1944 | MR | Zbl
[10] Ishkhanyan A., Suominen K.-A., “New solutions of Heun's general equation”, J. Phys. A: Math. Gen., 36 (2003), L81–L85, arXiv: 0909.1684 | DOI | MR | Zbl
[11] Its A. R., Prokhorov A., “On some Hamiltonian properties of the isomonodromic tau functions”, Ludwig Faddeev Memorial Volume, World Sci. Publ., Hackensack, NJ, 2018, 227–264, arXiv: 1803.04212 | DOI | MR | Zbl
[12] Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A modern theory of special functions, Aspects of Mathematics, E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | DOI | MR
[13] Jimbo M., “Monodromy problem and the boundary condition for some Painlevé equations”, Publ. Res. Inst. Math. Sci., 18 (1982), 1137–1161 | DOI | MR | Zbl
[14] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl
[15] Kimura T., “On Fuchsian differential equations reducible to hypergeometric equations by linear transformations”, Funkcial. Ekvac., 13 (1971), 213–232 | MR | Zbl
[16] Maier R. S., “The 192 solutions of the Heun equation”, Math. Comp., 76 (2007), 811–843, arXiv: math.CA/0408317 | DOI | MR | Zbl
[17] Mason P., Differential equations and singularities II, https://analyticphysics.com
[18] Nikiforov A. F., Uvarov V. B., Special functions of mathematical physics. A unified introduction with applications, Birkhäuser Verlag, Basel, 1988 | DOI | MR | Zbl
[19] Ohyama Y., Okumura S., “A coalescent diagram of the Painlevé equations from the viewpoint of isomonodromic deformations”, J. Phys. A: Math. Gen., 39 (2006), 12129–12151, arXiv: math.CA/0601614 | DOI | MR | Zbl
[20] Okamoto K., “Isomonodromic deformation and Painlevé equations, and the Garnier system”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 33 (1986), 575–618 | MR | Zbl
[21] Painlevé P., “Mémoire sur les équations différentielles dont l'intégrale générale est uniforme”, Bull. Soc. Math. France, 28 (1900), 201–261 | DOI | MR | Zbl
[22] Painlevé P., “Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme”, Acta Math., 25 (1902), 1–85 | DOI | MR
[23] Poole E. G. C., Linear differential equations, Oxford University Press, Oxford, 1936
[24] Ronveaux A. (ed.), Heun's differential equations, Oxford University Press, Oxford, 1995
[25] Slavyanov S.Yu., Lay W., Special functions. A unified theory based on singularities, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000 | MR | Zbl
[26] Slavyanov S. Yu., Shatco D. A., Ishkhanyan A. M., Rotinyan T. A., “Generation and removal of apparent singularities in linear ordinary differential equations with polynomial coefficients”, Theoret. and Math. Phys., 189 (2016), 1726–1733, arXiv: 1606.01476 | DOI | MR | Zbl