Equivariant Tilting Modules, Pfaffian Varieties and Noncommutative Matrix Factorizations
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that equivariant tilting modules over equivariant algebras induce equivalences of derived factorization categories. As an application, we show that the derived category of a noncommutative resolution of a linear section of a Pfaffian variety is equivalent to the derived factorization category of a noncommutative gauged Landau–Ginzburg model $(\Lambda,\chi, w)^{\mathbb{G}_m}$, where $\Lambda$ is a noncommutative resolution of the quotient singularity $W/\operatorname{GSp}(Q)$ arising from a certain representation $W$ of the symplectic similitude group $\operatorname{GSp}(Q)$ of a symplectic vector space $Q$.
Keywords: equivariant tilting module, Pfaffian variety, matrix factorization.
@article{SIGMA_2021_17_a54,
     author = {Yuki Hirano},
     title = {Equivariant {Tilting} {Modules,} {Pfaffian} {Varieties} and {Noncommutative} {Matrix} {Factorizations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a54/}
}
TY  - JOUR
AU  - Yuki Hirano
TI  - Equivariant Tilting Modules, Pfaffian Varieties and Noncommutative Matrix Factorizations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a54/
LA  - en
ID  - SIGMA_2021_17_a54
ER  - 
%0 Journal Article
%A Yuki Hirano
%T Equivariant Tilting Modules, Pfaffian Varieties and Noncommutative Matrix Factorizations
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a54/
%G en
%F SIGMA_2021_17_a54
Yuki Hirano. Equivariant Tilting Modules, Pfaffian Varieties and Noncommutative Matrix Factorizations. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a54/

[1] Alonso Tarrío L., Jeremías López A., Pérez Rodríguez M., Vale Gonsalves M. J., “A functorial formalism for quasi-coherent sheaves on a geometric stack”, Expo. Math., 33 (2015), 452–501, arXiv: 1304.2520 | DOI | MR | Zbl

[2] Ballard M., Deliu D., Favero D., Isik M. U., Katzarkov L., “Resolutions in factorization categories”, Adv. Math., 295 (2016), 195–249, arXiv: 1212.3264 | DOI | MR | Zbl

[3] Ballard M., Favero D., Katzarkov L., “A category of kernels for equivariant factorizations and its implications for Hodge theory”, Publ. Math. Inst. Hautes Études Sci., 120 (2014), 1–111, arXiv: 1105.3177 | DOI | MR | Zbl

[4] Ballard M., Favero D., Katzarkov L., “A category of kernels for equivariant factorizations, II: further implications”, J. Math. Pures Appl., 102 (2014), 702–757, arXiv: 1310.2656 | DOI | MR | Zbl

[5] Halpern-Leistner D., Sam S. V., “Combinatorial constructions of derived equivalences”, J. Amer. Math. Soc., 33 (2020), 735–773, arXiv: 1601.02030 | DOI | MR | Zbl

[6] Happel D., Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, 119, Cambridge University Press, Cambridge, 1988 | DOI | MR | Zbl

[7] Hirano Y., “Derived Knörrer periodicity and Orlov's theorem for gauged Landau–Ginzburg models”, Compos. Math., 153 (2017), 973–1007, arXiv: 1602.04769 | DOI | MR | Zbl

[8] Hirano Y., “Equivalences of derived factorization categories of gauged Landau–Ginzburg models”, Adv. Math., 306 (2017), 200–278, arXiv: 1506.00177 | DOI | MR | Zbl

[9] Kashiwara M., Schapira P., Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer-Verlag, Berlin, 1994 | DOI | MR

[10] Kashiwara M., Schapira P., Categories and sheaves, Grundlehren der Mathematischen Wissenschaften, 332, Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl

[11] Lipman J., “Notes on derived functors and Grothendieck duality”, Foundations of Grothendieck duality for diagrams of schemes, Lecture Notes in Math., 1960, Springer, Berlin, 2009, 1–259 | DOI | MR | Zbl

[12] Lunts V. A., Schnürer O. M., “Matrix factorizations and semi-orthogonal decompositions for blowing-ups”, J. Noncommut. Geom., 10 (2016), 907–979, arXiv: 1212.2670 | DOI | MR | Zbl

[13] Okonek C., Teleman A., “Graded tilting for gauged Landau–Ginzburg models and geometric applications”, Pure Appl. Math. Q, 17 (2021), 185–235, arXiv: 1907.10099 | DOI | MR | Zbl

[14] Olsson M., Algebraic spaces and stacks, American Mathematical Society Colloquium Publications, 62, Amer. Math. Soc., Providence, RI, 2016 | DOI | MR | Zbl

[15] Positselski L., “Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence”, Mem. Amer. Math. Soc., 212, 2011, vi+133 pp., arXiv: 0905.2621 | DOI | MR

[16] Rennemo J. V., Segal E., “Hori-mological projective duality”, Duke Math. J., 168 (2019), 2127–2205, arXiv: 1609.04045 | DOI | MR | Zbl

[17] Rennemo J. V., Segal E., Van den Bergh M., “A non-commutative Bertini theorem”, J. Noncommut. Geom., 13 (2019), 609–616, arXiv: 1705.01366 | DOI | MR | Zbl

[18] Špenko Š., Van den Bergh M., “Non-commutative resolutions of quotient singularities for reductive groups”, Invent. Math., 210 (2017), 3–67, arXiv: 1502.05240 | DOI | MR

[19] The Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu

[20] Thomason R. W., Equivariant resolution, linearization, and Hilbert's fourteenth problem over arbitrary base schemes, Adv. Math., 65 (1987), 16–34 | DOI | MR | Zbl