Mots-clés : superpolynomials
@article{SIGMA_2021_17_a53,
author = {Charles F. Dunkl},
title = {Nonsymmetric {Macdonald} {Superpolynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a53/}
}
Charles F. Dunkl. Nonsymmetric Macdonald Superpolynomials. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a53/
[1] Baker T. H., Forrester P. J., “A $q$-analogue of the type $A$ Dunkl operator and integral kernel”, Int. Math. Res. Not., 1997 (1997), 667–686, arXiv: q-alg/9701039 | DOI | MR | Zbl
[2] Baker T. H., Forrester P. J., “Symmetric Jack polynomials from non-symmetric theory”, Ann. Comb., 3 (1999), 159–170, arXiv: q-alg/9707001 | DOI | MR | Zbl
[3] Blondeau-Fournier O., Desrosiers P., Lapointe L., Mathieu P., “Macdonald polynomials in superspace as eigenfunctions of commuting operators”, J. Comb., 3 (2012), 495–561, arXiv: 1202.3922 | DOI | MR | Zbl
[4] Braverman A., Etingof P., Finkelberg M., “Cyclotomic double affine Hecke algebras (with an appendix by Hiraku Nakajima and Daisuke Yamakawa)”, Ann. Sci. Éc. Norm. Supér. (4), 53 (2020), 1249–1312, arXiv: 1611.10216 | DOI | MR | Zbl
[5] Cherednik I., “Nonsymmetric Macdonald polynomials”, Int. Math. Res. Not., 1995 (1995), 483–515, arXiv: q-alg/9505029 | DOI | MR | Zbl
[6] Desrosiers P., Lapointe L., Mathieu P., “Jack polynomials in superspace”, Comm. Math. Phys., 242 (2003), 331–360, arXiv: hep-th/0209074 | DOI | MR | Zbl
[7] Dipper R., James G., “Representations of Hecke algebras of general linear groups”, Proc. London Math. Soc., 52 (1986), 20–52 | DOI | MR | Zbl
[8] Dunkl C. F., “A positive-definite inner product for vector-valued Macdonald polynomials”, Sém. Lothar. Combin., 80 (2019), B80a, 26 pp., arXiv: 1808.05251 | MR | Zbl
[9] Dunkl C. F., Luque J. G., “Vector valued Macdonald polynomials”, Sém. Lothar. Combin., 66 (2012), B66b, 68 pp., arXiv: 1106.0875 | MR
[10] González C., Lapointe L., “The norm and the evaluation of the Macdonald polynomials in superspace”, European J. Combin., 83 (2020), 103018, 30 pp., arXiv: 1808.04941 | DOI | MR | Zbl
[11] Griffeth S., “Orthogonal functions generalizing Jack polynomials”, Trans. Amer. Math. Soc., 362 (2010), 6131–6157, arXiv: 0707.0251 | DOI | MR | Zbl
[12] Lascoux A., “Yang–Baxter graphs, Jack and Macdonald polynomials”, Ann. Comb., 5 (2001), 397–424 | DOI | MR | Zbl
[13] Macdonald I. G., Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, 157, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl
[14] Mimachi K., Noumi M., “A reproducing kernel for nonsymmetric Macdonald polynomials”, Duke Math. J., 91 (1998), 621–634, arXiv: q-alg/9610014 | DOI | MR | Zbl