@article{SIGMA_2021_17_a52,
author = {Howard S. Cohl and Justin Park and Hans Volkmer},
title = {Gauss {Hypergeometric} {Representations} of the {Ferrers} {Function} of the {Second} {Kind}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a52/}
}
TY - JOUR AU - Howard S. Cohl AU - Justin Park AU - Hans Volkmer TI - Gauss Hypergeometric Representations of the Ferrers Function of the Second Kind JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a52/ LA - en ID - SIGMA_2021_17_a52 ER -
%0 Journal Article %A Howard S. Cohl %A Justin Park %A Hans Volkmer %T Gauss Hypergeometric Representations of the Ferrers Function of the Second Kind %J Symmetry, integrability and geometry: methods and applications %D 2021 %V 17 %U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a52/ %G en %F SIGMA_2021_17_a52
Howard S. Cohl; Justin Park; Hans Volkmer. Gauss Hypergeometric Representations of the Ferrers Function of the Second Kind. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a52/
[1] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[2] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981 | MR
[3] Ferrers N. M., An elementary treatise on spherical harmonics and subjects connected with them, Macmillan, London, 1877 | Zbl
[4] Heine E., Handbuch der Kugelfunctionen, Theorie und Anwendungen, v. 1, Druck und Verlag von G. Reimer, Berlin, 1878
[5] Heine E., Handbuch der Kugelfunctionen, Theorie und Anwendungen, v. 2, Druck und Verlag von G. Reimer, Berlin, 1881
[6] Hobson E. W., The theory of spherical and ellipsoidal harmonics, Chelsea Publishing Company, New York, 1955 | MR
[7] Karp D. B., Prilepkina E. G., “Applications of the Stieltjes and Laplace transform representations of the hypergeometric functions”, Integral Transforms Spec. Funct., 28 (2017), 710–731, arXiv: 1705.02493 | DOI | MR | Zbl
[8] Lebedev N. N., Special functions and their applications, Dover Publications, Inc., New York, 1972 | MR | Zbl
[9] Magnus W., Oberhettinger F., Soni R. P., Formulas and theorems for the special functions of mathematical physics, Die Grundlehren der mathematischen Wissenschaften, 52, Springer-Verlag, New York, 1966 | DOI | MR | Zbl
[10] Olbricht R., “Studien über die Kugel- und Cylinderfunctionen”, Nova Acta d. Kais. Leop.-Carol. Deutschen Akad. d. Naturf., 52 (1888), 1–48
[11] Olver F. W.J., Olde Daalhuis A. B., Lozier D. W., Schneider B. I., Boisvert R. F., Clark C. W., Miller B. R., Saunders B. V., Cohl H. S., McClain M. A. (eds.), NIST Digital Library of Mathematical Functions, Release 1.1.1 of 2021-03-15, , 2021 http://dlmf.nist.gov/
[12] Schäfke F. W., Einführung in die Theorie der speziellen Funktionen der mathematischen Physik, Die Grundlehren der mathematischen Wissenschaften, 118, Springer-Verlag, Berlin – Göttingen – Heidelberg, 1963 | DOI | MR | Zbl
[13] Zhurina M. I., Karmazina L., Tables and formulae for the spherical functions $P^{m}_{-1/2+i\tau} (z)$, Pergamon Press, Oxford – New York – Paris, 1966 | MR