Poisson Principal Bundles
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We semiclassicalise the theory of quantum group principal bundles to the level of Poisson geometry. The total space $X$ is a Poisson manifold with Poisson-compatible contravariant connection, the fibre is a Poisson–Lie group in the sense of Drinfeld with bicovariant Poisson-compatible contravariant connection, and the base has an inherited Poisson structure and Poisson-compatible contravariant connection. The latter are known to be the semiclassical data for a quantum differential calculus. The theory is illustrated by the Poisson level of the $q$-Hopf fibration on the standard $q$-sphere. We also construct the Poisson level of the spin connection on a principal bundle.
Keywords: noncommutative geometry, quantum group gauge theory, symplectic geometry, Poisson geometry, Lie bialgebra, homogenous space
Mots-clés : $q$-monopole.
@article{SIGMA_2021_17_a5,
     author = {Shahn Majid and Liam Williams},
     title = {Poisson {Principal} {Bundles}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a5/}
}
TY  - JOUR
AU  - Shahn Majid
AU  - Liam Williams
TI  - Poisson Principal Bundles
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a5/
LA  - en
ID  - SIGMA_2021_17_a5
ER  - 
%0 Journal Article
%A Shahn Majid
%A Liam Williams
%T Poisson Principal Bundles
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a5/
%G en
%F SIGMA_2021_17_a5
Shahn Majid; Liam Williams. Poisson Principal Bundles. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a5/

[1] Beggs E. J., Majid S., “Semiclassical differential structures”, Pacific J. Math., 224 (2006), 1–44, arXiv: math.QA/0306273 | DOI | MR | Zbl

[2] Beggs E. J., Majid S., “Quantization by cochain twists and nonassociative differentials”, J. Math. Phys., 51 (2010), 053522, 32 pp., arXiv: math.QA/0506450 | DOI | MR | Zbl

[3] Beggs E. J., Majid S., “Poisson–Riemannian geometry”, J. Geom. Phys., 114 (2017), 450–491, arXiv: 1403.4231 | DOI | MR | Zbl

[4] Beggs E. J., Majid S., Quantum Riemannian geometry, Grundlehren der mathematischen Wissenschaften, 355, Springer, Berlin, 2020 | DOI | Zbl

[5] Bonneau P., Flato M., Gerstenhaber M., Pinczon G., “The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations”, Comm. Math. Phys., 161 (1994), 125–156 | DOI | MR | Zbl

[6] Bordemann M., Neumaier N., Waldmann S., Weiß S., “Deformation quantization of surjective submersions and principal fibre bundles”, J. Reine Angew. Math., 639 (2010), 1–38, arXiv: 0711.2965 | DOI | MR | Zbl

[7] Brzeziński T., Majid S., “Quantum group gauge theory on quantum spaces”, Comm. Math. Phys., 157 (1993), 591–638, arXiv: hep-th/9208007 | DOI | MR | Zbl

[8] Brzeziński T., Majid S., “Quantum geometry of algebra factorisations and coalgebra bundles”, Comm. Math. Phys., 213 (2000), 491–521, arXiv: math.QA/9808067 | DOI | MR | Zbl

[9] Bursztyn H., “Poisson vector bundles, contravariant connections and deformations”, Progr. Theoret. Phys. Suppl., 144 (2001), 26–37 | DOI | MR | Zbl

[10] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl

[11] Crainic M., Fernandes R. L., “Integrability of Lie brackets”, Ann. of Math., 157 (2003), 575–620, arXiv: math.DG/0105033 | DOI | MR | Zbl

[12] Dazord P., Sondaz D., “Groupes de Poisson affines”, Symplectic Geometry, Groupoids, and Integrable Systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., 20, Springer, New York, 1991, 99–128 | DOI | MR

[13] Drinfeld V. G., “Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang–Baxter equations”, Sov. Math. Dokl., 27 (1983), 68–71 | MR | Zbl

[14] Drinfeld V. G., “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR

[15] Drinfeld V. G., “On Poisson homogeneous spaces of Poisson–Lie groups”, Theoret. and Math. Phys., 95 (1993), 226–227 | DOI | MR | Zbl

[16] Dubois-Violette M., Michor P. W., “Connections on central bimodules in noncommutative differential geometry”, J. Geom. Phys., 20 (1996), 218–232, arXiv: q-alg/9503020 | DOI | MR | Zbl

[17] Fernandes R. L., “Connections in Poisson geometry. I Holonomy and invariants”, J. Differential Geom., 54 (2000), 303–365, arXiv: math.DG/0001129 | DOI | MR | Zbl

[18] Fritz C., Majid S., “Noncommutative spherically symmetric spacetimes at semiclassical order”, Classical Quantum Gravity, 34 (2017), 135013, 50 pp., arXiv: 1611.04971 | DOI | MR | Zbl

[19] Hajac P. M., Majid S., “Projective module description of the $q$-monopole”, Comm. Math. Phys., 206 (1999), 247–264, arXiv: math.QA/9803003 | DOI | MR | Zbl

[20] Hawkins E., “Noncommutative rigidity”, Comm. Math. Phys., 246 (2004), 211–235, arXiv: math.QA/0211203 | DOI | MR | Zbl

[21] Huebschmann J., “Poisson cohomology and quantization”, J. Reine Angew. Math., 408 (1990), 57–113 | DOI | MR | Zbl

[22] Klim J., Majid S., “Hopf quasigroups and the algebraic 7-sphere”, J. Algebra, 323 (2010), 3067–3110, arXiv: 0906.5026 | DOI | MR | Zbl

[23] Kosmann-Schwarzbach Y., “Lie bialgebras, Poisson Lie groups and dressing transformations”, Integrability of Nonlinear Systems (Pondicherry, 1996), Lecture Notes in Phys., 495, Springer, Berlin, 1997, 104–170 | DOI | MR | Zbl

[24] Lu J.-H., Multiplicative and affine Poisson structures on Lie groups, Ph.D. Thesis, University of California, Berkeley, 1990 | MR

[25] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl

[26] Majid S., “Riemannian geometry of quantum groups and finite groups with nonuniversal differentials”, Comm. Math. Phys., 225 (2002), 131–170, arXiv: math.QA/0006150 | DOI | MR | Zbl

[27] Majid S., “Noncommutative model with spontaneous time generation and Planckian bound”, J. Math. Phys., 46 (2005), 103520, 18 pp., arXiv: hep-th/0507271 | DOI | MR | Zbl

[28] Majid S., “Noncommutative Riemannian and spin geometry of the standard $q$-sphere”, Comm. Math. Phys., 256 (2005), 255–285, arXiv: math.QA/0307351 | DOI | MR | Zbl

[29] Majid S., “Reconstruction and quantization of Riemannian structures”, J. Math. Phys., 61 (2020), 022501, 32 pp., arXiv: 1307.2778 | DOI | MR | Zbl

[30] Majid S., Tao W.-Q., “Noncommutative differentials on Poisson–Lie groups and pre-Lie algebras”, Pacific J. Math., 284 (2016), 213–256, arXiv: 1412.2284 | DOI | MR | Zbl

[31] Mourad J., “Linear connections in non-commutative geometry”, Classical Quantum Gravity, 12 (1995), 965–974, arXiv: hep-th/9410201 | DOI | MR | Zbl

[32] Podleś P., “Quantum spheres”, Lett. Math. Phys., 14 (1987), 193–202 | DOI | MR | Zbl

[33] Reshetikhin N. Yu., Takhtadzhyan L. A., Faddeev L. D., “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1 (1990), 193–225 | MR | Zbl

[34] Stafford J. T., van den Bergh M., “Noncommutative curves and noncommutative surfaces”, Bull. Amer. Math. Soc. (N.S.), 38 (2001), 171–216, arXiv: math.RA/9910082 | DOI | MR | Zbl

[35] Vaisman I., Lectures on the geometry of Poisson manifolds, Progress in Mathematics, 118, Birkhäuser Verlag, Basel, 1994 | DOI | MR | Zbl

[36] Woronowicz S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Comm. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl