@article{SIGMA_2021_17_a48,
author = {Jean-Louis Clerc and Khalid Koufany},
title = {Symmetry {Breaking} {Differential} {Operators} for {Tensor} {Products} of {Spinorial} {Representations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a48/}
}
TY - JOUR AU - Jean-Louis Clerc AU - Khalid Koufany TI - Symmetry Breaking Differential Operators for Tensor Products of Spinorial Representations JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a48/ LA - en ID - SIGMA_2021_17_a48 ER -
%0 Journal Article %A Jean-Louis Clerc %A Khalid Koufany %T Symmetry Breaking Differential Operators for Tensor Products of Spinorial Representations %J Symmetry, integrability and geometry: methods and applications %D 2021 %V 17 %U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a48/ %G en %F SIGMA_2021_17_a48
Jean-Louis Clerc; Khalid Koufany. Symmetry Breaking Differential Operators for Tensor Products of Spinorial Representations. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a48/
[1] Beckmann R., Clerc J.-L., “Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group”, J. Funct. Anal., 262 (2012), 4341–4376, arXiv: 1104.3461 | DOI | MR | Zbl
[2] Ben Saïd S., Clerc J.-L., Koufany K., “Conformally covariant bi-differential operators for differential forms”, Comm. Math. Phys., 373 (2020), 739–761, arXiv: 1809.06290 | DOI | MR | Zbl
[3] Ben Saïd S., Clerc J.-L., Koufany K., “Conformally covariant bi-differential operators on a simple real Jordan algebra”, Int. Math. Res. Not., 2020 (2020), 2287–2351, arXiv: 1704.01817 | DOI | MR | Zbl
[4] Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften, 298, Springer-Verlag, Berlin, 1992 | MR | Zbl
[5] Clerc J.-L., “Symmetry breaking differential operators, the source operator and Rodrigues formulae”, Pacific J. Math., 307 (2020), 79–107, arXiv: 1902.06073 | DOI | MR | Zbl
[6] Clerc J.-L., Ørsted B., “Conformal covariance for the powers of the Dirac operator”, J. Lie Theory, 30 (2020), 345–360, arXiv: 1409.4983 | MR | Zbl
[7] Delanghe R., Sommen F., Souček V., Clifford algebra and spinor-valued functions. A function theory for the Dirac operator, Mathematics and its Applications, 53, Kluwer Academic Publishers Group, Dordrecht, 1992 | DOI | MR | Zbl
[8] Deligne P., “Notes on spinors”, Quantum Fields and Strings: a Course for Mathematicians (Princeton, NJ, 1996/1997), v. 1, 2, Amer. Math. Soc., Providence, RI, 1999, 99–135 | MR | Zbl
[9] Fischmann M., Ørsted B., Somberg P., “Bernstein–Sato identities and conformal symmetry breaking operators”, J. Funct. Anal., 277 (2019), 108219, 36 pp., arXiv: 1711.01546 | DOI | MR | Zbl
[10] Gel'fand I. M., Shilov G. E., Generalized functions, v. 1, Properties and operations, Academic Press, New York – London, 1964 | MR
[11] Knapp A. W., Representation theory of semisimple groups. An overview based on examples, Princeton Mathematical Series, 36, Princeton University Press, Princeton, NJ, 1986 | DOI | MR | Zbl
[12] Kobayashi T., “F-method for symmetry breaking operators”, Differential Geom. Appl., 33, suppl. (2014), 272–289, arXiv: 1303.3541 | DOI | MR | Zbl
[13] Kobayashi T., Pevzner M., “Differential symmetry breaking operators: II Rankin–Cohen operators for symmetric pairs”, Selecta Math. (N.S.), 22 (2016), 847–911, arXiv: 1301.2111 | DOI | MR | Zbl