Symmetry Breaking Differential Operators for Tensor Products of Spinorial Representations
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathbb S$ be a Clifford module for the complexified Clifford algebra $\mathbb{C}\ell(\mathbb R^n)$, $\mathbb S'$ its dual, $\rho$ and $\rho'$ be the corresponding representations of the spin group $\mathrm{Spin}(n)$. The group $G= \mathrm{Spin}(1,n+1)$ is a (twofold) covering of the conformal group of $\mathbb R^n$. For $\lambda, \mu\in \mathbb C$, let $\pi_{\rho, \lambda}$ (resp. $\pi_{\rho',\mu}$) be the spinorial representation of $G$ realized on a (subspace of) $C^\infty(\mathbb R^n,\mathbb S)$ (resp. $C^\infty(\mathbb R^n,\mathbb S')$). For $0\leq k\leq n$ and $m\in \mathbb N$, we construct a symmetry breaking differential operator $B_{k;\lambda,\mu}^{(m)}$ from $C^\infty(\mathbb R^n \times \mathbb R^n,\mathbb{S}\,\otimes\, \mathbb{S}')$ into $C^\infty(\mathbb R^n, \Lambda^*_k(\mathbb R^n) \otimes \mathbb{C})$ which intertwines the representations $\pi_{\rho, \lambda}\otimes \pi_{\rho',\mu} $ and $\pi_{\tau^*_k,\lambda+\mu+2m}$, where $\tau^*_k$ is the representation of $\mathrm{Spin}(n)$ on the space $\Lambda^*_k(\mathbb R^n) \otimes \mathbb{C}$ of complex-valued alternating $k$-forms on $\mathbb{R}^n$.
Keywords: Clifford algebra, spinors, tensor product, conformal analysis, symmetry breaking differential operators.
@article{SIGMA_2021_17_a48,
     author = {Jean-Louis Clerc and Khalid Koufany},
     title = {Symmetry {Breaking} {Differential} {Operators} for {Tensor} {Products} of {Spinorial} {Representations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a48/}
}
TY  - JOUR
AU  - Jean-Louis Clerc
AU  - Khalid Koufany
TI  - Symmetry Breaking Differential Operators for Tensor Products of Spinorial Representations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a48/
LA  - en
ID  - SIGMA_2021_17_a48
ER  - 
%0 Journal Article
%A Jean-Louis Clerc
%A Khalid Koufany
%T Symmetry Breaking Differential Operators for Tensor Products of Spinorial Representations
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a48/
%G en
%F SIGMA_2021_17_a48
Jean-Louis Clerc; Khalid Koufany. Symmetry Breaking Differential Operators for Tensor Products of Spinorial Representations. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a48/

[1] Beckmann R., Clerc J.-L., “Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group”, J. Funct. Anal., 262 (2012), 4341–4376, arXiv: 1104.3461 | DOI | MR | Zbl

[2] Ben Saïd S., Clerc J.-L., Koufany K., “Conformally covariant bi-differential operators for differential forms”, Comm. Math. Phys., 373 (2020), 739–761, arXiv: 1809.06290 | DOI | MR | Zbl

[3] Ben Saïd S., Clerc J.-L., Koufany K., “Conformally covariant bi-differential operators on a simple real Jordan algebra”, Int. Math. Res. Not., 2020 (2020), 2287–2351, arXiv: 1704.01817 | DOI | MR | Zbl

[4] Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften, 298, Springer-Verlag, Berlin, 1992 | MR | Zbl

[5] Clerc J.-L., “Symmetry breaking differential operators, the source operator and Rodrigues formulae”, Pacific J. Math., 307 (2020), 79–107, arXiv: 1902.06073 | DOI | MR | Zbl

[6] Clerc J.-L., Ørsted B., “Conformal covariance for the powers of the Dirac operator”, J. Lie Theory, 30 (2020), 345–360, arXiv: 1409.4983 | MR | Zbl

[7] Delanghe R., Sommen F., Souček V., Clifford algebra and spinor-valued functions. A function theory for the Dirac operator, Mathematics and its Applications, 53, Kluwer Academic Publishers Group, Dordrecht, 1992 | DOI | MR | Zbl

[8] Deligne P., “Notes on spinors”, Quantum Fields and Strings: a Course for Mathematicians (Princeton, NJ, 1996/1997), v. 1, 2, Amer. Math. Soc., Providence, RI, 1999, 99–135 | MR | Zbl

[9] Fischmann M., Ørsted B., Somberg P., “Bernstein–Sato identities and conformal symmetry breaking operators”, J. Funct. Anal., 277 (2019), 108219, 36 pp., arXiv: 1711.01546 | DOI | MR | Zbl

[10] Gel'fand I. M., Shilov G. E., Generalized functions, v. 1, Properties and operations, Academic Press, New York – London, 1964 | MR

[11] Knapp A. W., Representation theory of semisimple groups. An overview based on examples, Princeton Mathematical Series, 36, Princeton University Press, Princeton, NJ, 1986 | DOI | MR | Zbl

[12] Kobayashi T., “F-method for symmetry breaking operators”, Differential Geom. Appl., 33, suppl. (2014), 272–289, arXiv: 1303.3541 | DOI | MR | Zbl

[13] Kobayashi T., Pevzner M., “Differential symmetry breaking operators: II Rankin–Cohen operators for symmetric pairs”, Selecta Math. (N.S.), 22 (2016), 847–911, arXiv: 1301.2111 | DOI | MR | Zbl