Double Box Motive
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The motive associated to the second Symanzik polynomial of the double-box two-loop Feynman graph with generic masses and momenta is shown to be an elliptic curve.
Keywords: elliptic curve, double-box graph, cubic hypersurface.
Mots-clés : Feynman amplitude
@article{SIGMA_2021_17_a47,
     author = {Spencer Bloch},
     title = {Double {Box} {Motive}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a47/}
}
TY  - JOUR
AU  - Spencer Bloch
TI  - Double Box Motive
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a47/
LA  - en
ID  - SIGMA_2021_17_a47
ER  - 
%0 Journal Article
%A Spencer Bloch
%T Double Box Motive
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a47/
%G en
%F SIGMA_2021_17_a47
Spencer Bloch. Double Box Motive. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a47/

[1] Bloch S., Vanhove P., “The elliptic dilogarithm for the sunset graph”, J. Number Theory, 148 (2015), 328–364, arXiv: 1309.5865 | DOI | MR | Zbl

[2] Collino A., “The Abel–Jacobi isomorphism for the cubic fivefold”, Pacific J. Math., 122 (1986), 43–55 | DOI | MR | Zbl

[3] Deligne P., Équations différentielles à points singuliers réguliers, Lecture Notes in Math., 163, Springer-Verlag, Berlin – New York, 1970 | DOI | MR

[4] Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York – Heidelberg, 1977 | DOI | MR | Zbl

[5] Huybrechts D., The geometry of cubic hypersurfaces, Preprint, 2020

[6] Kreimer D., “The master two-loop two-point function. The general case”, Phys. Lett. B, 273 (1991), 277–281 | DOI | MR

[7] Peters C. A.M., Steenbrink J. H.M., Mixed Hodge structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 52, Springer-Verlag, Berlin, 2008 | DOI | MR | Zbl