Mots-clés : parabolic symbol PDEs, Monge–Ampère equations
@article{SIGMA_2021_17_a46,
author = {Benjamin B. Mcmillan},
title = {Geometry and {Conservation} {Laws} for a {Class} of {Second-Order} {Parabolic} {Equations} {II:} {Conservation} {Laws}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a46/}
}
TY - JOUR AU - Benjamin B. Mcmillan TI - Geometry and Conservation Laws for a Class of Second-Order Parabolic Equations II: Conservation Laws JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a46/ LA - en ID - SIGMA_2021_17_a46 ER -
%0 Journal Article %A Benjamin B. Mcmillan %T Geometry and Conservation Laws for a Class of Second-Order Parabolic Equations II: Conservation Laws %J Symmetry, integrability and geometry: methods and applications %D 2021 %V 17 %U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a46/ %G en %F SIGMA_2021_17_a46
Benjamin B. Mcmillan. Geometry and Conservation Laws for a Class of Second-Order Parabolic Equations II: Conservation Laws. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a46/
[1] Bocharov A. V., Chetverikov V. N., Duzhin S. V., Khor'kova N. G., Krasil'shchik I. S., Samokhin A. V., Torkhov Yu.N., Verbovetsky A. M., Vinogradov A. M., Symmetries and conservation laws for differential equations of mathematical physics, Translations of Mathematical Monographs, 182, Amer. Math. Soc., Providence, RI, 1999 | DOI | MR | Zbl
[2] Bryant R. L., Chern S. S., Gardner R. B., Goldschmidt H. L., Griffiths P. A., Exterior differential systems, Mathematical Sciences Research Institute Publications, 18, Springer-Verlag, New York, 1991 | DOI | MR | Zbl
[3] Bryant R. L., Griffiths P. A., “Characteristic cohomology of differential systems. I. General theory”, J. Amer. Math. Soc., 8 (1995), 507–596 | DOI | MR | Zbl
[4] Bryant R. L., Griffiths P. A., “Characteristic cohomology of differential systems. II. Conservation laws for a class of parabolic equations”, Duke Math. J., 78 (1995), 531–676 | DOI | MR | Zbl
[5] Clelland J. N., “Geometry of conservation laws for a class of parabolic partial differential equations”, Selecta Math. (N.S.), 3 (1997), 1–77 | DOI | MR | Zbl
[6] McMillan B. B., “Geometry and conservation laws for a class of second-order parabolic equations I: Geometry”, J. Geom. Phys., 157 (2020), 103824, 29 pp., arXiv: 1810.00458 | DOI | MR | Zbl
[7] Vinogradov A. M., “The ${\mathcal C}$-spectral sequence, Lagrangian formalism, and conservation laws. I The linear theory”, J. Math. Anal. Appl., 100 (1984), 1–40 | DOI | MR | Zbl
[8] Vinogradov A. M., “The ${\mathcal C}$-spectral sequence, Lagrangian formalism, and conservation laws. II The nonlinear theory”, J. Math. Anal. Appl., 100 (1984), 41–129 | DOI | MR | Zbl