Geometry and Conservation Laws for a Class of Second-Order Parabolic Equations II: Conservation Laws
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

I consider the existence and structure of conservation laws for the general class of evolutionary scalar second-order differential equations with parabolic symbol. First I calculate the linearized characteristic cohomology for such equations. This provides an auxiliary differential equation satisfied by the conservation laws of a given parabolic equation. This is used to show that conservation laws for any evolutionary parabolic equation depend on at most second derivatives of solutions. As a corollary, it is shown that the only evolutionary parabolic equations with at least one non-trivial conservation law are of Monge–Ampère type.
Keywords: conservation laws, characteristic cohomology of exterior differential systems.
Mots-clés : parabolic symbol PDEs, Monge–Ampère equations
@article{SIGMA_2021_17_a46,
     author = {Benjamin B. Mcmillan},
     title = {Geometry and {Conservation} {Laws} for a {Class} of {Second-Order} {Parabolic} {Equations} {II:} {Conservation} {Laws}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a46/}
}
TY  - JOUR
AU  - Benjamin B. Mcmillan
TI  - Geometry and Conservation Laws for a Class of Second-Order Parabolic Equations II: Conservation Laws
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a46/
LA  - en
ID  - SIGMA_2021_17_a46
ER  - 
%0 Journal Article
%A Benjamin B. Mcmillan
%T Geometry and Conservation Laws for a Class of Second-Order Parabolic Equations II: Conservation Laws
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a46/
%G en
%F SIGMA_2021_17_a46
Benjamin B. Mcmillan. Geometry and Conservation Laws for a Class of Second-Order Parabolic Equations II: Conservation Laws. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a46/

[1] Bocharov A. V., Chetverikov V. N., Duzhin S. V., Khor'kova N. G., Krasil'shchik I. S., Samokhin A. V., Torkhov Yu.N., Verbovetsky A. M., Vinogradov A. M., Symmetries and conservation laws for differential equations of mathematical physics, Translations of Mathematical Monographs, 182, Amer. Math. Soc., Providence, RI, 1999 | DOI | MR | Zbl

[2] Bryant R. L., Chern S. S., Gardner R. B., Goldschmidt H. L., Griffiths P. A., Exterior differential systems, Mathematical Sciences Research Institute Publications, 18, Springer-Verlag, New York, 1991 | DOI | MR | Zbl

[3] Bryant R. L., Griffiths P. A., “Characteristic cohomology of differential systems. I. General theory”, J. Amer. Math. Soc., 8 (1995), 507–596 | DOI | MR | Zbl

[4] Bryant R. L., Griffiths P. A., “Characteristic cohomology of differential systems. II. Conservation laws for a class of parabolic equations”, Duke Math. J., 78 (1995), 531–676 | DOI | MR | Zbl

[5] Clelland J. N., “Geometry of conservation laws for a class of parabolic partial differential equations”, Selecta Math. (N.S.), 3 (1997), 1–77 | DOI | MR | Zbl

[6] McMillan B. B., “Geometry and conservation laws for a class of second-order parabolic equations I: Geometry”, J. Geom. Phys., 157 (2020), 103824, 29 pp., arXiv: 1810.00458 | DOI | MR | Zbl

[7] Vinogradov A. M., “The ${\mathcal C}$-spectral sequence, Lagrangian formalism, and conservation laws. I The linear theory”, J. Math. Anal. Appl., 100 (1984), 1–40 | DOI | MR | Zbl

[8] Vinogradov A. M., “The ${\mathcal C}$-spectral sequence, Lagrangian formalism, and conservation laws. II The nonlinear theory”, J. Math. Anal. Appl., 100 (1984), 41–129 | DOI | MR | Zbl