@article{SIGMA_2021_17_a45,
author = {Gerard Besson and Sylvestre Gallot},
title = {On {Scalar} and {Ricci} {Curvatures}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a45/}
}
Gerard Besson; Sylvestre Gallot. On Scalar and Ricci Curvatures. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a45/
[1] Anderson M. T., “Short geodesics and gravitational instantons”, J. Differential Geom., 31 (1990), 265–275 | DOI | MR | Zbl
[2] Bessières L., Besson G., Maillot S., “Ricci flow on open 3-manifolds and positive scalar curvature”, Geom. Topol., 15 (2011), 927–975, arXiv: 1001.1458 | DOI | MR | Zbl
[3] Besson G., Courtois G., Gallot S., “Entropies et rigidités des espaces localement symétriques de courbure strictement négative”, Geom. Funct. Anal., 5 (1995), 731–799 | DOI | MR | Zbl
[4] Besson G., Courtois G., Gallot S., Sambusetti A., Curvature-free Margulis lemma for Gromov-hyperbolic spaces, arXiv: 1712.08386
[5] Besson G., Courtois G., Gallot S., Sambusetti A., Compactness and finiteness theorems for Gromov-hyperbolic spaces, Preprint, 2020
[6] Bieberbach L., “Über die Bewegungsgruppen der Euklidischen Räume”, Math. Ann., 70 (1911), 297–336 | DOI | MR | Zbl
[7] Breuillard E., Green B., Tao T., “The structure of approximate groups”, Publ. Math. Inst. Hautes Études Sci., 116 (2012), 115–221, arXiv: 1110.5008 | DOI | MR | Zbl
[8] Bridson M. R., Haefliger A., Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer-Verlag, Berlin, 1999 | DOI | MR | Zbl
[9] Burago Y. D., Zalgaller V. A., Geometric inequalities, Grundlehren der Mathematischen Wissenschaften, 285, Springer-Verlag, Berlin, 1988 | DOI | MR | Zbl
[10] Buser P., Karcher H., “The Bieberbach case in Gromov's almost flat manifold theorem”, Global Differential Geometry and Global Analysis (Berlin, 1979), Lecture Notes in Math., 838, Springer, Berlin – New York, 1981, 82–93 | DOI | MR
[11] Cavalucci N., Sambusetti A., Packing and doubling in metric spaces with curvature bounded above, Preprint, 2020
[12] Chang S., Weinberger S., Yu G., “Taming 3-manifolds using scalar curvature”, Geom. Dedicata, 148 (2010), 3–14 | DOI | MR | Zbl
[13] Cheeger J., Colding T. H., “Lower bounds on Ricci curvature and the almost rigidity of warped products”, Ann. of Math., 144 (1996), 189–237 | DOI | MR | Zbl
[14] Cheeger J., Colding T. H., “On the structure of spaces with Ricci curvature bounded below. I”, J. Differential Geom., 46 (1997), 406–480 | DOI | MR | Zbl
[15] Cheeger J., Colding T. H., “On the structure of spaces with Ricci curvature bounded below. II”, J. Differential Geom., 54 (2000), 13–35 | DOI | MR | Zbl
[16] Cheeger J., Colding T. H., “On the structure of spaces with Ricci curvature bounded below. III”, J. Differential Geom., 54 (2000), 37–74 | DOI | MR | Zbl
[17] Colding T. H., Minicozzi II W.P., A course in minimal surfaces, Graduate Studies in Mathematics, 121, Amer. Math. Soc., Providence, RI, 2011 | DOI | MR | Zbl
[18] Coornaert M., Delzant T., Papadopoulos A., Géométrie et théorie des groupes: les groupes hyperboliques de Gromov, Lecture Notes in Math., 1441, Springer-Verlag, Berlin, 1990 | DOI | MR
[19] Courtois G., “Lemme de Margulis à courbure de Ricci minorée (d'après Vitali Kapovitch et Burkhard Wilking)”, Astérisque, 367–368, no. 1075, 2015, 25–56 | MR | Zbl
[20] Davis M. W., Januszkiewicz T., “Hyperbolization of polyhedra”, J. Differential Geom., 34 (1991), 347–388 | DOI | MR
[21] Edwards Jr. C.H., “Open $3$-manifolds which are simply connected at infinity”, Proc. Amer. Math. Soc., 14 (1963), 391–395 | DOI | MR | Zbl
[22] Farrell F. T., Jones L. E., “Topological rigidity for compact non-positively curved manifolds”, Differential Geometry: Riemannian Geometry (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Amer. Math. Soc., Providence, RI, 1993, 229–274 | DOI | MR | Zbl
[23] Ferry S. C., “Topological finiteness theorems for manifolds in Gromov–Hausdorff space”, Duke Math. J., 74 (1994), 95–106 | DOI | MR | Zbl
[24] Ghys E., de la Harpe P. (eds), Sur les groupes hyperboliques d'après Mikhael Gromov (Bern, 1988), Progr. Math., 83, Springer, New York, MA, 1990 | DOI | MR
[25] Greenberg M. J., Harper J. R., Algebraic topology: a first course, Mathematics Lecture Note Series, 58, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1981 | MR | Zbl
[26] Greene R. E., Petersen V. P., “Little topology, big volume”, Duke Math. J., 67 (1992), 273–290 | DOI | MR | Zbl
[27] Gromov M., “Groups of polynomial growth and expanding maps (with an appendix by Jacques Tits)”, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53–78 | DOI | MR | Zbl
[28] Gromov M., “Large Riemannian manifolds”, Curvature and Topology of Riemannian Manifolds (Katata, 1985), Lecture Notes in Math., 1201, Springer, Berlin, 1986, 108–121 | DOI | MR
[29] Gromov M., “Hyperbolic groups”, Essays in Group Theory, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75–263 | DOI | MR
[30] Gromov M., “Sign and geometric meaning of curvature”, Rend. Sem. Mat. Fis. Milano, 61 (1991), 9–123 | DOI | MR | Zbl
[31] Gromov M., Metric structures for Riemannian and non-Riemannian spaces, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007 | DOI | MR | Zbl
[32] Gromov M., “A dozen problems, questions and conjectures about positive scalar curvature”, Foundations of Mathematics and Physics one Century after Hilbert, Springer, Cham, 2018, 135–158, arXiv: 1710.05946 | DOI | MR | Zbl
[33] Gromov M., “Metric inequalities with scalar curvature”, Geom. Funct. Anal., 28 (2018), 645–726, arXiv: 1710.04655 | DOI | MR | Zbl
[34] Gromov M., Lawson Jr. H.B., “Spin and scalar curvature in the presence of a fundamental group. I”, Ann. of Math., 111 (1980), 209–230 | DOI | MR | Zbl
[35] Gromov M., Lawson Jr. H.B., “Positive scalar curvature and the Dirac operator on complete Riemannian manifolds”, Inst. Hautes Études Sci. Publ. Math., 58, 1983, 83–196 | DOI | MR | Zbl
[36] Grove K., Petersen V P., Wu J.Y., “Geometric finiteness theorems via controlled topology”, Invent. Math., 99 (1990), 205–213 | DOI | MR | Zbl
[37] Grove K., Petersen V P., Wu J.Y., “Erratum to Geometric finiteness theorems via controlled topology”, Invent. Math., 104 (1991), 221–222 | DOI | MR | Zbl
[38] Guth L., “Volumes of balls in large Riemannian manifolds”, Ann. of Math., 173 (2011), 51–76, arXiv: math.DG/0610212 | DOI | MR | Zbl
[39] Hajłasz P., Koskela P., “Sobolev met Poincaré”, Mem. Amer. Math. Soc., 145, 2000, 1–101 | DOI | MR
[40] Hamilton R. S., “Three-manifolds with positive Ricci curvature”, J. Differential Geometry, 17 (1982), 255–306 | DOI | MR | Zbl
[41] Heintze E., Mannigfaltigkeiten negativer Krümmung, Nachdruck der habilitationsschrift von 1976 edition, Bonner Mathematische Schriften, 350, Universität Bonn, Mathematisches Institut, Bonn, 2002 | MR | Zbl
[42] Kapovitch V., Wilking B., Structure of fundamental groups of manifolds with Ricci curvature bounded below, arXiv: 1105.5955
[43] Kazhdan D. A., Margulis G. A., “A proof of Selberg's conjecture”, Math. USSR Sb., 4 (1968), 147–152 | DOI | MR
[44] Kister J. M., McMillan Jr. D.R., “Locally euclidean factors of $E^{4}$ which cannot be imbedded in $E^{3}$”, Ann. of Math., 76 (1962), 541–546 | DOI | MR | Zbl
[45] Kreck M., Lück W., “Topological rigidity for non-aspherical manifolds”, Pure Appl. Math. Q., 5 (2009), 873–914, arXiv: math.GT/0509238 | DOI | MR | Zbl
[46] Li C., The dihedral rigidity conjecture for $n$-prisms, arXiv: 1907.03855
[47] Li C., “A polyhedron comparison theorem for 3-manifolds with positive scalar curvature”, Invent. Math., 219 (2020), 1–37, arXiv: 1710.08067 | DOI | MR
[48] Liu G., “3-manifolds with nonnegative Ricci curvature”, Invent. Math., 193 (2013), 367–375, arXiv: 1108.1888 | DOI | MR | Zbl
[49] Lott J., Villani C., “Ricci curvature for metric-measure spaces via optimal transport”, Ann. of Math., 169 (2009), 903–991, arXiv: math.DG/0412127 | DOI | MR | Zbl
[50] Maillot S., “Some open 3-manifolds and 3-orbifolds without locally finite canonical decompositions”, Algebr. Geom. Topol., 8 (2008), 1795–1810, arXiv: 0802.1438 | DOI | MR
[51] Margulis G. A., “Discrete groups of motions of manifolds of nonpositive curvature”, Proceedings of the International Congress of Mathematicians (Vancouver, BC, 1974), v. 2, 1975, 21–34 | MR | Zbl
[52] McMillan Jr. D.R., “Some contractible open $3$-manifolds”, Trans. Amer. Math. Soc., 102 (1962), 373–382 | DOI | MR | Zbl
[53] Meeks III W. H., Yau S. T., “Topology of three-dimensional manifolds and the embedding problems in minimal surface theory”, Ann. of Math., 112 (1980), 441–484 | DOI | MR | Zbl
[54] Perelman G., The entropy formula for the Ricci flow and its geometric applications, arXiv: math.DG/0211159
[55] Perelman G., Ricci flow with surgery on three-manifolds, arXiv: math.DG/0303109
[56] Perelman G., Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, arXiv: math.DG/0307245
[57] Rolfsen D., “Characterizing the 3-cell by its metric”, Fund. Math., 68 (1970), 215–223 | DOI | MR | Zbl
[58] Rosenberg J., “Manifolds of positive scalar curvature: a progress report”, Surv. Differ. Geom., 11, Int. Press, Somerville, MA, 2007, 259–294 | DOI | MR | Zbl
[59] Schoen R., Yau S. T., “Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature”, Ann. of Math., 110 (1979), 127–142 | DOI | MR | Zbl
[60] Schoen R., Yau S. T., “Complete three-dimensional manifolds with positive Ricci curvature and scalar curvature”, Seminar on Differential Geometry, Ann. of Math. Stud., 102, Princeton University Press, Princeton, N.J., 1982, 209–228 | MR
[61] Scott P., Tucker T., “Some examples of exotic noncompact $3$-manifolds”, Quart. J. Math. Oxford Ser. (2), 40 (1989), 481–499 | DOI | MR | Zbl
[62] Serre J.-P., Trees, Springer-Verlag, Berlin – New York, 1980 | DOI | MR | Zbl
[63] Siebenmann L. C., “Approximating cellular maps by homeomorphisms”, Topology, 11 (1972), 271–294 | DOI | MR | Zbl
[64] Souto J., Stover M., “A Cantor set with hyperbolic complement”, Conform. Geom. Dyn., 17 (2013), 58–67, arXiv: 1205.4668 | DOI | MR | Zbl
[65] Sturm K.-T., “On the geometry of metric measure spaces. II”, Acta Math., 196 (2006), 133–177 | DOI | MR | Zbl
[66] Thurston W. P., Three-dimensional geometry and topology, v. 1, Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1997 | MR | Zbl
[67] Veronelli G., “Scalar curvature via local extent”, Anal. Geom. Metr. Spaces, 6 (2018), 146–164, arXiv: 1710.07178 | DOI | MR | Zbl
[68] Wang J., Contractible $3$-manifold and positive scalar curvature (I), arXiv: 1901.04605
[69] Wang J., Contractible $3$-manifold and positive scalar curvature (II), arXiv: 1906.04128
[70] Wang J., Geometry of $3$-manifolds with uniformly positive scalar curvature, Preprint University of Augsburg, 2020 | MR
[71] Whitehead J. H.C., “Certain theorems about three-dimensional manifolds. I”, Quart. J. Math. Oxford, 5 (1934), 308–320 | DOI | MR
[72] Whitehead J. H.C., “Tree-dimensional manifolds (corrigendum)”, Quart. J. Math. Oxford, 6 (1935), 80 | DOI | MR | Zbl
[73] Whitehead J. H.C., “A certain open manifold whose group is unity”, Quart. J. Math. Oxford, 6 (1935), 268–279 | DOI | MR
[74] Zassenhaus H., “Beweis eines satzes über diskrete gruppen”, Abh. Math. Sem. Univ. Hamburg, 12 (1937), 289–312 | DOI | MR