How Discrete Spectrum and Resonances Influence the Asymptotics of the Toda Shock Wave
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We rigorously derive the long-time asymptotics of the Toda shock wave in a middle region where the solution is asymptotically finite gap. In particular, we describe the influence of the discrete spectrum in the spectral gap on the shift of the phase in the theta-function representation for this solution. We also study the effect of possible resonances at the endpoints of the gap on this phase. This paper is a continuation of research started in [arXiv:2001.05184].
Keywords: Toda equation, Riemann–Hilbert problem, steplike, shock.
@article{SIGMA_2021_17_a44,
     author = {Iryna Egorova and Johanna Michor},
     title = {How {Discrete} {Spectrum} and {Resonances} {Influence} the {Asymptotics} of the {Toda} {Shock} {Wave}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a44/}
}
TY  - JOUR
AU  - Iryna Egorova
AU  - Johanna Michor
TI  - How Discrete Spectrum and Resonances Influence the Asymptotics of the Toda Shock Wave
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a44/
LA  - en
ID  - SIGMA_2021_17_a44
ER  - 
%0 Journal Article
%A Iryna Egorova
%A Johanna Michor
%T How Discrete Spectrum and Resonances Influence the Asymptotics of the Toda Shock Wave
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a44/
%G en
%F SIGMA_2021_17_a44
Iryna Egorova; Johanna Michor. How Discrete Spectrum and Resonances Influence the Asymptotics of the Toda Shock Wave. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a44/

[1] Andreiev K., Egorova I., Lange T. L., Teschl G., “Rarefaction waves of the Korteweg–de Vries equation via nonlinear steepest descent”, J. Differential Equations, 261 (2016), 5371–5410, arXiv: 1602.02427 | DOI | MR | Zbl

[2] Bilman D., Trogdon T., “Numerical inverse scattering for the Toda lattice”, Comm. Math. Phys., 352 (2017), 805–879, arXiv: 1508.01788 | DOI | MR | Zbl

[3] Bleher P. M., “Lectures on random matrix models: the Riemann–Hilbert approach”, Random Matrices, Random Processes and Integrable Systems, CRM Ser. Math. Phys., Springer, New York, 2011, 251–349, arXiv: 0801.1858 | DOI | MR | Zbl

[4] Bloch A. M., Kodama Y., “Dispersive regularization of the Whitham equation for the Toda lattice”, SIAM J. Appl. Math., 52 (1992), 909–928 | DOI | MR | Zbl

[5] Bloch A. M., Kodama Y., “The Whitham equation and shocks in the Toda lattice”, Singular Limits of Dispersive Waves (Lyon, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 320, Plenum, New York, 1994, 1–19 | MR | Zbl

[6] Deift P., Kamvissis S., Kriecherbauer T., Zhou X., “The Toda rarefaction problem”, Comm. Pure Appl. Math., 49 (1996), 35–83 | 3.0.CO;2-8 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[7] Deift P., Kriecherbauer T., McLaughlin K. T.-R., Venakides S., Zhou X., “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[8] Deift P., Venakides S., Zhou X., “The collisionless shock region for the long-time behavior of solutions of the KdV equation”, Comm. Pure Appl. Math., 47 (1994), 199–206 | DOI | MR | Zbl

[9] Deift P., Zhou X., “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math., 137 (1993), 295–368, arXiv: math.AP/9201261 | DOI | MR | Zbl

[10] Egorova I., Gladka Z., Kotlyarov V., Teschl G., “Long-time asymptotics for the Korteweg–de Vries equation with step-like initial data”, Nonlinearity, 26 (2013), 1839–1864, arXiv: 1210.7434 | DOI | MR | Zbl

[11] Egorova I., Michor J., Pryimak A., Teschl G., Long-time asymptotics for Toda shock waves in the modulation region, arXiv: 2001.05184

[12] Egorova I., Michor J., Teschl G., “Long-time asymptotics for the Toda shock problem: non-overlapping spectra”, J. Math. Phys. Anal. Geom., 14 (2018), 406–451, arXiv: 1406.0720 | DOI | MR | Zbl

[13] Egorova I., Piorkowski M., Teschl G., On vector and matrix Riemann–Hilbert problems for KdV shock waves, arXiv: 1907.09792

[14] Girotti M., Grava T., Jenkins R., McLaughlin K. D.T.-R., “Numerical inverse scattering for the Toda lattice”, Comm. Math. Phys. (to appear) , arXiv: 1807.00608 | DOI | MR

[15] Grunert K., Teschl G., “Long-time asymptotics for the Korteweg–de Vries equation via nonlinear steepest descent”, Math. Phys. Anal. Geom., 12 (2009), 287–324, arXiv: 0807.5041 | DOI | MR | Zbl

[16] Its A. R., “Large $N$ asymptotics in random matrices: the Riemann–Hilbert approach”, Random Matrices, Random Processes and Integrable Systems, CRM Ser. Math. Phys., Springer, New York, 2011, 351–413 | DOI | MR | Zbl

[17] Kamvissis S., “On the Toda shock problem”, Phys. D, 65 (1993), 242–266 | DOI | MR | Zbl

[18] Krüger H., Teschl G., “Long-time asymptotics for the Toda lattice in the soliton region”, Math. Z., 262 (2009), 585–602, arXiv: 0711.2793 | DOI | MR | Zbl

[19] Krüger H., Teschl G., “Long-time asymptotics of the Toda lattice for decaying initial data revisited”, Rev. Math. Phys., 21 (2009), 61–109, arXiv: 0804.4693 | DOI | MR | Zbl

[20] Michor J., “Wave phenomena of the Toda lattice with steplike initial data”, Phys. Lett. A, 380 (2016), 1110–1116, arXiv: 1510.03581 | DOI | MR | Zbl

[21] Muskhelishvili N. I., Singular integral equations, Wolters-Noordhoff Publishing, Groningen, 1972 | MR

[22] Piorkowski M., Parametrix problem for the Korteweg–de Vries equation with steplike initial data, arXiv: 1908.11340

[23] Teschl G., Jacobi operators and completely integrable nonlinear lattices, Mathematical Surveys and Monographs, 72, Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl

[24] Toda M., Theory of nonlinear lattices, Springer Series in Solid-State Sciences, 20, 2nd ed., Springer-Verlag, Berlin, 1989 | DOI | MR | Zbl

[25] Venakides S., Deift P., Oba R., “The Toda shock problem”, Comm. Pure Appl. Math., 44 (1991), 1171–1242 | DOI | MR | Zbl