Linear Independence of Generalized Poincaré Series for Anti-de Sitter $3$-Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Gamma$ be a discrete group acting properly discontinuously and isometrically on the three-dimensional anti-de Sitter space $\mathrm{AdS}^{3}$, and $\square$ the Laplacian which is a second-order hyperbolic differential operator. We study linear independence of a family of generalized Poincaré series introduced by Kassel–Kobayashi [Adv. Math. 287 (2016), 123–236, arXiv:1209.4075], which are defined by the $\Gamma$-average of certain eigenfunctions on $\mathrm{AdS}^{3}$. We prove that the multiplicities of $L^{2}$-eigenvalues of the hyperbolic Laplacian $\square$ on $\Gamma\backslash\mathrm{AdS}^{3}$ are unbounded when $\Gamma$ is finitely generated. Moreover, we prove that the multiplicities of stable $L^{2}$-eigenvalues for compact anti-de Sitter $3$-manifolds are unbounded.
Keywords: anti-de Sitter $3$-manifold, Laplacian, stable $L^2$-eigenvalue.
@article{SIGMA_2021_17_a41,
     author = {Kazuki Kannaka},
     title = {Linear {Independence} of {Generalized} {Poincar\'e} {Series} for {Anti-de} {Sitter} $3${-Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a41/}
}
TY  - JOUR
AU  - Kazuki Kannaka
TI  - Linear Independence of Generalized Poincaré Series for Anti-de Sitter $3$-Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a41/
LA  - en
ID  - SIGMA_2021_17_a41
ER  - 
%0 Journal Article
%A Kazuki Kannaka
%T Linear Independence of Generalized Poincaré Series for Anti-de Sitter $3$-Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a41/
%G en
%F SIGMA_2021_17_a41
Kazuki Kannaka. Linear Independence of Generalized Poincaré Series for Anti-de Sitter $3$-Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a41/

[1] Benoist Y., “Actions propres sur les espaces homogènes réductifs”, Ann. of Math., 144 (1996), 315–347 | DOI | MR | Zbl

[2] Bourbaki N., Integration. II. Chapters 7–9, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2004 | DOI | MR

[3] Calabi E., Markus L., “Relativistic space forms”, Ann. of Math., 75 (1962), 63–76 | DOI | MR | Zbl

[4] Fox J., Strichartz R. S., “Unexpected spectral asymptotics for wave equations on certain compact spacetimes”, J. Anal. Math., 136 (2018), 209–251, arXiv: 1407.2517 | DOI | MR | Zbl

[5] Goldman W. M., “Nonstandard Lorentz space forms”, J. Differential Geom., 21 (1985), 301–308 | DOI | MR | Zbl

[6] Guéritaud F., Kassel F., “Maximally stretched laminations on geometrically finite hyperbolic manifolds”, Geom. Topol., 21 (2017), 693–840, arXiv: 1307.0250 | DOI | MR | Zbl

[7] Kannaka K., Counting orbits of certain infinitely generated non-sharp discontinuous groups for the anti-de Sitter space, arXiv: 1907.09303 | Zbl

[8] Kassel F., Quotients compacts d'espaces homogènes réels ou $p$-adiques, Ph.D. Thesis, Université Paris-Sud, 2009

[9] Kassel F., “Deformation of proper actions on reductive homogeneous spaces”, Math. Ann., 353 (2012), 599–632, arXiv: 0911.4247 | DOI | MR | Zbl

[10] Kassel F., Kobayashi T., “Poincaré series for non-Riemannian locally symmetric spaces”, Adv. Math., 287 (2016), 123–236, arXiv: 1209.4075 | DOI | MR | Zbl

[11] Kassel F., Kobayashi T., Spectral analysis on standard locally homogeneous spaces, arXiv: 1912.12601

[12] Kassel F., Kobayashi T., “Spectral analysis on pseudo-Riemannian locally symmetric spaces”, Proc. Japan Acad. Ser. A Math. Sci., 96 (2020), 69–74, arXiv: 2001.03292 | DOI | MR | Zbl

[13] Kassel F., Kobayashi T., Analyticity of Poincaré series on standard non-Riemannian locally symmetric spaces

[14] Klingler B., “Complétude des variétés lorentziennes à courbure constante”, Math. Ann., 306 (1996), 353–370 | DOI | MR | Zbl

[15] Kobayashi T., “Proper action on a homogeneous space of reductive type”, Math. Ann., 285 (1989), 249–263 | DOI | MR | Zbl

[16] Kobayashi T., “Criterion for proper actions on homogeneous spaces of reductive groups”, J. Lie Theory, 6 (1996), 147–163 | MR | Zbl

[17] Kobayashi T., “Deformation of compact Clifford–Klein forms of indefinite-Riemannian homogeneous manifolds”, Math. Ann., 310 (1998), 395–409 | DOI | MR | Zbl

[18] Kobayashi T., “Discontinuous groups for non-Riemannian homogeneous spaces”, Mathematics Unlimited – 2001 and Beyond, Springer, Berlin, 2001, 723–747 | DOI | MR | Zbl

[19] Kobayashi T., “Intrinsic sound of anti-de Sitter manifolds”, Lie Theory and its Applications in Physics, Springer Proc. Math. Stat., 191, Springer, Singapore, 2016, 83–99, arXiv: 1609.05986 | DOI | MR | Zbl

[20] Kobayashi T., Nasrin S., “Deformation of properly discontinuous actions of ${\mathbb Z}^k$ on ${\mathbb R}^{k+1}$”, Internat. J. Math., 17 (2006), 1175–1193, arXiv: math.DG/0603318 | DOI | MR | Zbl

[21] Kulkarni R. S., Raymond F., “$3$-dimensional Lorentz space-forms and Seifert fiber spaces”, J. Differential Geom., 21 (1985), 231–268 | DOI | MR | Zbl

[22] Rudin W., Functional analysis, International Series in Pure and Applied Mathematics, 2nd ed., McGraw-Hill, Inc., New York, 1991 | MR | Zbl

[23] Salein F., “Variétés anti-de Sitter de dimension 3 exotiques”, Ann. Inst. Fourier (Grenoble), 50 (2000), 257–284 | DOI | MR | Zbl