A Decomposition of Twisted Equivariant $K$-Theory
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For $G$ a finite group, a normalized $2$-cocycle $\alpha\in Z^{2}\big(G,{\mathbb S}^{1}\big)$ and $X$ a $G$-space on which a normal subgroup $A$ acts trivially, we show that the $\alpha$-twisted $G$-equivariant $K$-theory of $X$ decomposes as a direct sum of twisted equivariant $K$-theories of $X$ parametrized by the orbits of an action of $G$ on the set of irreducible $\alpha$-projective representations of $A$. This generalizes the decomposition obtained in [Gómez J.M., Uribe B., Internat. J. Math. 28 (2017), 1750016, 23 pages, arXiv:1604.01656] for equivariant $K$-theory. We also explore some examples of this decomposition for the particular case of the dihedral groups $D_{2n}$ with $n\ge 2$ an even integer.
Keywords: twisted equivariant $K$-theory, $K$-theory, finite groups.
@article{SIGMA_2021_17_a40,
     author = {Jos\'e Manuel G\'omez and Johana Ram{\'\i}rez},
     title = {A {Decomposition} of {Twisted} {Equivariant} $K${-Theory}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a40/}
}
TY  - JOUR
AU  - José Manuel Gómez
AU  - Johana Ramírez
TI  - A Decomposition of Twisted Equivariant $K$-Theory
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a40/
LA  - en
ID  - SIGMA_2021_17_a40
ER  - 
%0 Journal Article
%A José Manuel Gómez
%A Johana Ramírez
%T A Decomposition of Twisted Equivariant $K$-Theory
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a40/
%G en
%F SIGMA_2021_17_a40
José Manuel Gómez; Johana Ramírez. A Decomposition of Twisted Equivariant $K$-Theory. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a40/

[1] Adem A., Ruan Y., “Twisted orbifold $K$-theory”, Comm. Math. Phys., 237 (2003), 533–556, arXiv: math.AT/0107168 | DOI | MR | Zbl

[2] Ángel A., Becerra E., Velásquez M., Proper actions and decompositions in equivariant $K$-theory, arXiv: 2003.09777

[3] Ángel A., Gómez J. M., Uribe B., “Equivariant complex bundles, fixed points and equivariant unitary bordism”, Algebr. Geom. Topol., 18 (2018), 4001–4035, arXiv: 1710.00879 | DOI | MR

[4] Atiyah M., Segal G., “Twisted $K$-theory and cohomology”, Inspired by S.S. Chern, Nankai Tracts Math., 11, World Sci. Publ., Hackensack, NJ, 2006, 5–43, arXiv: math.KT/0510674 | DOI | Zbl

[5] Freed D. S., Hopkins M. J., Teleman C., “Loop groups and twisted $K$-theory I”, J. Topol., 4 (2011), 737–798, arXiv: 0711.1906 | DOI | MR | Zbl

[6] Gómez J. M., Uribe B., “A decomposition of equivariant $K$-theory in twisted equivariant $K$-theories”, Internat. J. Math., 28 (2017), 1750016, 23 pp., arXiv: 1604.01656 | DOI | MR | Zbl

[7] Karpilovsky G., Group representations, v. 2, North-Holland Mathematics Studies, 177, North-Holland Publishing Co., Amsterdam, 1993 | MR | Zbl

[8] Karpilovsky G., Group representations, v. 3, North-Holland Mathematics Studies, 180, North-Holland Publishing Co., Amsterdam, 1994 | MR | Zbl

[9] Segal G., “Classifying spaces and spectral sequences”, Inst. Hautes Études Sci. Publ. Math., 34 (1968), 105–112 | DOI | MR | Zbl

[10] Wassermann A. J., Automorphic actions of compact groups on operator algebras, Ph.D. Thesis, University of Pennsylvania, 1981 | MR