CFT Correlators for Cardy Bulk Fields via String-Net Models
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that string-net models provide a novel geometric method to construct invariants of mapping class group actions. Concretely, we consider string-net models for a modular tensor category ${\mathcal C}$. We show that the datum of a specific commutative symmetric Frobenius algebra in the Drinfeld center $Z(\mathcal{C})$ gives rise to invariant string-nets. The Frobenius algebra has the interpretation of the algebra of bulk fields of the conformal field theory in the Cardy case.
Keywords: two-dimensional conformal field theory, string-net models, correlators, Cardy case.
@article{SIGMA_2021_17_a39,
     author = {Christoph Schweigert and Yang Yang},
     title = {CFT {Correlators} for {Cardy} {Bulk} {Fields} via {String-Net} {Models}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a39/}
}
TY  - JOUR
AU  - Christoph Schweigert
AU  - Yang Yang
TI  - CFT Correlators for Cardy Bulk Fields via String-Net Models
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a39/
LA  - en
ID  - SIGMA_2021_17_a39
ER  - 
%0 Journal Article
%A Christoph Schweigert
%A Yang Yang
%T CFT Correlators for Cardy Bulk Fields via String-Net Models
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a39/
%G en
%F SIGMA_2021_17_a39
Christoph Schweigert; Yang Yang. CFT Correlators for Cardy Bulk Fields via String-Net Models. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a39/

[1] Bakalov B., Kirillov Jr. A., “On the Lego-Teichmüller game”, Transform. Groups, 5 (2000), 207–244, arXiv: math.GT/9809057 | DOI | MR | Zbl

[2] Bakalov B., Kirillov Jr. A., Lectures on tensor categories and modular functors, University Lecture Series, 21, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl

[3] Balsam B., Turaev–Viro theory as an extended TQFT II, arXiv: 1010.1222 | MR

[4] Balsam B., Turaev–Viro theory as an extended TQFT III, arXiv: 1012.0560 | MR

[5] Etingof P., Nikshych D., Ostrik V., “On fusion categories”, Ann. of Math., 162 (2005), 581–642, arXiv: math.QA/0203060 | DOI | MR | Zbl

[6] Felder G., Fröhlich J., Fuchs J., Schweigert C., “Correlation functions and boundary conditions in rational conformal field theory and three-dimensional topology”, Compositio Math., 131 (2002), 189–237, arXiv: hep-th/9912239 | DOI | MR | Zbl

[7] Fjelstad J., Fuchs J., Runkel I., Schweigert C., “TFT construction of RCFT correlators. V Proof of modular invariance and factorisation”, Theory Appl. Categ., 16 (2006), 342–433, arXiv: hep-th/0503194 | MR | Zbl

[8] Fröhlich J., Fuchs J., Runkel I., Schweigert C., “Correspondences of ribbon categories”, Adv. Math., 199 (2006), 192–329, arXiv: math.CT/0309465 | DOI | MR | Zbl

[9] Fuchs J., Gannon T., Schaumann G., Schweigert C., “The logarithmic Cardy case: boundary states and annuli”, Nuclear Phys. B, 930 (2018), 287–327, arXiv: 1712.01922 | DOI | MR | Zbl

[10] Fuchs J., Runkel I., Schweigert C., “TFT construction of RCFT correlators. I Partition functions”, Nuclear Phys. B, 646 (2002), 353–497, arXiv: hep-th/0204148 | DOI | MR | Zbl

[11] Fuchs J., Runkel I., Schweigert C., “TFT construction of RCFT correlators. II Unoriented world sheets”, Nuclear Phys. B, 678 (2004), 511–637, arXiv: hep-th/0306164 | DOI | MR | Zbl

[12] Fuchs J., Runkel I., Schweigert C., “TFT construction of RCFT correlators. III Simple currents”, Nuclear Phys. B, 694 (2004), 277–353, arXiv: hep-th/0403157 | DOI | MR | Zbl

[13] Fuchs J., Runkel I., Schweigert C., “TFT construction of RCFT correlators. IV Structure constants and correlation functions”, Nuclear Phys. B, 715 (2005), 539–638, arXiv: hep-th/0412290 | DOI | MR | Zbl

[14] Fuchs J., Schweigert C., “Consistent systems of correlators in non-semisimple conformal field theory”, Adv. Math., 307 (2017), 598–639, arXiv: 1604.01143 | DOI | MR | Zbl

[15] Goosen G., Oriented 123-TQFTs via string-nets and state-sums, Ph.D. Thesis, Stellenbosch University, 2018

[16] Hatcher A., Lochak P., Schneps L., “On the Teichmüller tower of mapping class groups”, J. Reine Angew. Math., 521 (2000), 1–24 | DOI | MR | Zbl

[17] Kirillov Jr. A., String-net model of Turaev–Viro invariants, arXiv: 1106.6033

[18] Kirillov Jr. A., Balsam B., Turaev–Viro invariants as an extended TQFT, arXiv: 1004.1533 | MR

[19] Koenig R., Kuperberg G., Reichardt B. W., “Quantum computation with Turaev–Viro codes”, Ann. Physics, 325 (2010), 2707–2749, arXiv: 1002.2816 | DOI | MR | Zbl

[20] Kong L., Runkel I., “Morita classes of algebras in modular tensor categories”, Adv. Math., 219 (2008), 1548–1576, arXiv: 0708.1897 | DOI | MR | Zbl

[21] Kong L., Runkel I., “Cardy algebras and sewing constraints. I”, Comm. Math. Phys., 292 (2009), 871–912, arXiv: 0807.3356 | DOI | MR | Zbl

[22] Levin M. A., Wen X.-G., “String-net condensation: a physical mechanism for topological phases”, Phys. Rev. B, 71 (2005), 045110, 21 pp., arXiv: cond-mat/0404617 | DOI

[23] Ng S.-H., Schauenburg P., “Higher Frobenius–Schur indicators for pivotal categories”, Hopf algebras and generalizations, Contemp. Math., 441, Amer. Math. Soc., Providence, RI, 2007, 63–90, arXiv: math.QA/0503167 | DOI | MR | Zbl

[24] Shimizu K., “Non-degeneracy conditions for braided finite tensor categories”, Adv. Math., 355 (2019), 106778, 36 pp., arXiv: 1602.06534 | DOI | MR | Zbl

[25] Traube M., Cardy algebras, sewing constraints and string-nets, arXiv: 2009.11895 | MR

[26] Turaev V., Virelizier A., On two approaches to 3-dimensional TQFTs, arXiv: 1006.3501