Mots-clés : deformations, Poincaré–Birkhoff–Witt conditions
@article{SIGMA_2021_17_a38,
author = {Briana Foster-Greenwood and Cathy Kriloff},
title = {Degree-One {Rational} {Cherednik} {Algebras} for the {Symmetric} {Group}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a38/}
}
TY - JOUR AU - Briana Foster-Greenwood AU - Cathy Kriloff TI - Degree-One Rational Cherednik Algebras for the Symmetric Group JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a38/ LA - en ID - SIGMA_2021_17_a38 ER -
Briana Foster-Greenwood; Cathy Kriloff. Degree-One Rational Cherednik Algebras for the Symmetric Group. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a38/
[1] Bergman G. M., “The diamond lemma for ring theory”, Adv. Math., 29 (1978), 178–218 | DOI | MR
[2] Braverman A., Gaitsgory D., “Poincaré–Birkhoff–Witt theorem for quadratic algebras of Koszul type”, J. Algebra, 181 (1996), 315–328, arXiv: hep-th/9411113 | DOI | MR | Zbl
[3] Cherednik I., “A unification of Knizhnik–Zamolodchikov and Dunkl operators via affine Hecke algebras”, Invent. Math., 106 (1991), 411–431 | DOI | MR
[4] Drinfel'd V.G., “Degenerate affine Hecke algebras and Yangians”, Funct. Anal. Appl., 20 (1986), 58–60 | DOI | MR | Zbl
[5] Etingof P., Calogero–Moser systems and representation theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2007 | DOI | MR | Zbl
[6] Etingof P., Ginzburg V., “Symplectic reflection algebras, Calogero–Moser space, and deformed Harish-Chandra homomorphism”, Invent. Math., 147 (2002), 243–348, arXiv: math.AG/0011114 | DOI | MR | Zbl
[7] Farinati M., “Hochschild duality, localization, and smash products”, J. Algebra, 284 (2005), 415–434, arXiv: math.KT/0409039 | DOI | MR | Zbl
[8] Foster-Greenwood B., Kriloff C., “Drinfeld orbifold algebras for symmetric groups”, J. Algebra, 491 (2017), 573–610 | DOI | DOI | MR | Zbl
[9] Gan W. L., Ginzburg V., “Almost-commuting variety, $\mathcal D$-modules, and Cherednik algebras (with an appendix by Ginzburg)”, Int. Math. Res. Pap., 2006 (2006), 26439, 54 pp., arXiv: math.RT/0409262 | DOI | MR | Zbl
[10] Gerstenhaber M., Schack S. D., “Algebraic cohomology and deformation theory”, Deformation Theory of Algebras and Structures and Applications (Il Ciocco, 1986), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 247, Kluwer Acad. Publ., Dordrecht, 1988, 11–264 | DOI | MR
[11] Ginzburg V., Kaledin D., “Poisson deformations of symplectic quotient singularities”, Adv. Math., 186 (2004), 1–57, arXiv: math.AG/0212279 | DOI | MR | Zbl
[12] Gordon I. G., “Symplectic reflection alegebras”, Trends in Representation Theory of Algebras and Related Topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, 285–347, arXiv: 0712.1568 | DOI | MR | Zbl
[13] Gordon I. G., “Rational Cherednik algebras”, Proceedings of the International Congress of Mathematicians, v. III, Hindustan Book Agency, New Delhi, 2010, 1209–1225 | DOI | MR
[14] Grayson D. R., Stillman M. E., Macaulay2, a software system for research in algebraic geometry, http://www.math.uiuc.edu/Macaulay2/
[15] Lusztig G., “Cuspidal local systems and graded Hecke algebras. I”, Inst. Hautes Études Sci. Publ. Math., 67 (1988), 145–202 | DOI | MR | Zbl
[16] Ram A., Shepler A. V., “Classification of graded Hecke algebras for complex reflection groups”, Comment. Math. Helv., 78 (2003), 308–334, arXiv: math.GR/0209135 | DOI | MR | Zbl
[17] Shepler A. V., Witherspoon S., “Hochschild cohomology and graded Hecke algebras”, Trans. Amer. Math. Soc., 360 (2008), 3975–4005 | DOI | MR | Zbl
[18] Shepler A. V., Witherspoon S., “Drinfeld orbifold algebras”, Pacific J. Math., 259 (2012), 161–193, arXiv: 1111.7198 | DOI | MR | Zbl
[19] Ştefan D., “Hochschild cohomology on Hopf Galois extensions”, J. Pure Appl. Algebra, 103 (1995), 221–233 | DOI | MR