The Primitive Derivation and Discrete Integrals
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The modules of logarithmic derivations for the (extended) Catalan and Shi arrangements associated with root systems are known to be free. However, except for a few cases, explicit bases for such modules are not known. In this paper, we construct explicit bases for type $A$ root systems. Our construction is based on Bandlow–Musiker's integral formula for a basis of the space of quasiinvariants. The integral formula can be considered as an expression for the inverse of the primitive derivation introduced by K. Saito. We prove that the discrete analogues of the integral formulas provide bases for Catalan and Shi arrangements.
Keywords: hyperplane arrangements, freeness, Shi arrangements.
Mots-clés : Catalan arrangements
@article{SIGMA_2021_17_a37,
     author = {Daisuke Suyama and Masahiko Yoshinaga},
     title = {The {Primitive} {Derivation} and {Discrete} {Integrals}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a37/}
}
TY  - JOUR
AU  - Daisuke Suyama
AU  - Masahiko Yoshinaga
TI  - The Primitive Derivation and Discrete Integrals
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a37/
LA  - en
ID  - SIGMA_2021_17_a37
ER  - 
%0 Journal Article
%A Daisuke Suyama
%A Masahiko Yoshinaga
%T The Primitive Derivation and Discrete Integrals
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a37/
%G en
%F SIGMA_2021_17_a37
Daisuke Suyama; Masahiko Yoshinaga. The Primitive Derivation and Discrete Integrals. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a37/

[1] Abe T., Enomoto N., Feigin M., Yoshinaga M., Free reflection multiarrangements and quasi-invariants, in preparation

[2] Abe T., Suyama D., “A basis construction of the extended Catalan and Shi arrangements of the type $A_2$”, J. Algebra, 493 (2018), 20–35, arXiv: 1312.5524 | DOI | MR | Zbl

[3] Athanasiadis C. A., “On free deformations of the braid arrangement”, European J. Combin., 19 (1998), 7–18 | DOI | MR | Zbl

[4] Bandlow J., Musiker G., “A new characterization for the $m$-quasiinvariants of $S_n$ and explicit basis for two row hook shapes”, J. Combin. Theory Ser. A, 115 (2008), 1333–1357, arXiv: 0707.3174 | DOI | MR | Zbl

[5] Chalykh O. A., Veselov A. P., “Commutative rings of partial differential operators and Lie algebras”, Comm. Math. Phys., 126 (1990), 597–611 | DOI | MR | Zbl

[6] Edelman P. H., Reiner V., “Free arrangements and rhombic tilings”, Discrete Comput. Geom., 15 (1996), 307–340 | DOI | MR | Zbl

[7] Feigin M., Private communication

[8] Feigin M., Veselov A. P., “Quasi-invariants of Coxeter groups and $m$-harmonic polynomials”, Int. Math. Res. Not., 2002 (2002), 521–545, arXiv: math-ph/0105014 | DOI | MR | Zbl

[9] Felder G., Veselov A. P., “Action of Coxeter groups on $m$-harmonic polynomials and Knizhnik–Zamolodchikov equations”, Mosc. Math. J., 3 (2003), 1269–1291, arXiv: math.QA/0108012 | DOI | MR | Zbl

[10] Gao R., Pei D., Terao H., “The Shi arrangement of the type $D_\ell$”, Proc. Japan Acad. Ser. A Math. Sci., 88 (2012), 41–45, arXiv: 1109.1381 | DOI | MR | Zbl

[11] Orlik P., Terao H., Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, 300, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl

[12] Postnikov A., Stanley R. P., “Deformations of Coxeter hyperplane arrangements”, J. Combin. Theory Ser. A, 91 (2000), 544–597, arXiv: math.CO/9712213 | DOI | MR | Zbl

[13] Saito K., “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27 (1980), 265–291 | MR | Zbl

[14] Saito K., “Period mapping associated to a primitive form”, Publ. Res. Inst. Math. Sci., 19 (1983), 1231–1264 | DOI | MR | Zbl

[15] Saito K., “On a linear structure of the quotient variety by a finite reflexion group”, Publ. Res. Inst. Math. Sci., 29 (1993), 535–579 | DOI | MR | Zbl

[16] Saito K., “Uniformization of the orbifold of a finite reflection group”, Frobenius Manifolds, Aspects Math., E36, Friedr. Vieweg, Wiesbaden, 2004, 265–320 | DOI | MR

[17] Shi J.-Y., The Kazhdan–Lusztig cells in certain affine Weyl groups, Lecture Notes in Mathematics, 1179, Springer-Verlag, Berlin, 1986 | DOI | MR | Zbl

[18] Suyama D., “A basis construction for the Shi arrangement of the type $B_\ell$ or $C_\ell$”, Comm. Algebra, 43 (2015), 1435–1448, arXiv: 1205.6294 | DOI | MR | Zbl

[19] Suyama D., Terao H., “The Shi arrangements and the Bernoulli polynomials”, Bull. Lond. Math. Soc., 44 (2012), 563–570, arXiv: 1103.3214 | DOI | MR | Zbl

[20] Terao H., “Multiderivations of Coxeter arrangements”, Invent. Math., 148 (2002), 659–674, arXiv: math.CO/0011247 | DOI | MR | Zbl

[21] Terao H., “The Hodge filtration and the contact-order filtration of derivations of Coxeter arrangements”, Manuscripta Math., 118 (2005), 1–9, arXiv: math.CO/0205058 | DOI | MR | Zbl

[22] Tsuchida T., “On quasiinvariants of $S_n$ of hook shape”, Osaka J. Math., 47 (2010), 461–485, arXiv: 0807.1892 | MR | Zbl

[23] Yoshinaga M., “The primitive derivation and freeness of multi-Coxeter arrangements”, Proc. Japan Acad. Ser. A Math. Sci., 78 (2002), 116–119, arXiv: math.CO/0206216 | DOI | MR | Zbl

[24] Yoshinaga M., “Characterization of a free arrangement and conjecture of Edelman and Reiner”, Invent. Math., 157 (2004), 449–454 | DOI | MR | Zbl

[25] Yoshinaga M., “Freeness of hyperplane arrangements and related topics”, Ann. Fac. Sci. Toulouse Math., 23 (2014), 483–512, arXiv: 1212.3523 | DOI | MR | Zbl

[26] Ziegler G. M., “Multiarrangements of hyperplanes and their freeness”, Singularities (Iowa City, IA, 1986), Contemp. Math., 90, Amer. Math. Soc., Providence, RI, 1989, 345–359 | DOI | MR