Sobolev Lifting over Invariants
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove lifting theorems for complex representations $V$ of finite groups $G$. Let $\sigma=(\sigma_1,\dots,\sigma_n)$ be a minimal system of homogeneous basic invariants and let $d$ be their maximal degree. We prove that any continuous map $\overline{f} \colon \mathbb{R}^m \to V$ such that $f = \sigma \circ \overline{f}$ is of class $C^{d-1,1}$ is locally of Sobolev class $W^{1,p}$ for all $1 \le p d/(d-1)$. In the case $m=1$ there always exists a continuous choice $\overline{f}$ for given $f\colon \mathbb{R} \to \sigma(V) \subseteq \mathbb{C}^n$. We give uniform bounds for the $W^{1,p}$-norm of $\overline{f}$ in terms of the $C^{d-1,1}$-norm of $f$. The result is optimal: in general a lifting $\overline{f}$ cannot have a higher Sobolev regularity and it even might not have bounded variation if $f$ is in a larger Hölder class.
Keywords: Sobolev lifting over invariants, complex representations of finite groups, $Q$-valued Sobolev functions.
@article{SIGMA_2021_17_a36,
     author = {Adam Parusi\'nski and Armin Rainer},
     title = {Sobolev {Lifting} over {Invariants}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a36/}
}
TY  - JOUR
AU  - Adam Parusiński
AU  - Armin Rainer
TI  - Sobolev Lifting over Invariants
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a36/
LA  - en
ID  - SIGMA_2021_17_a36
ER  - 
%0 Journal Article
%A Adam Parusiński
%A Armin Rainer
%T Sobolev Lifting over Invariants
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a36/
%G en
%F SIGMA_2021_17_a36
Adam Parusiński; Armin Rainer. Sobolev Lifting over Invariants. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a36/

[1] Almgren Jr. F.J., Almgren's big regularity paper: $Q$-valued functions minimizing Dirichlet's integral and the regularity of area-minimizing rectifiable currents up to codimension 2, World Scientific Monograph Series in Mathematics, 1, World Sci. Publ. Co., Inc., River Edge, NJ, 2000 | DOI | MR

[2] Chevalley C., “Invariants of finite groups generated by reflections”, Amer. J. Math., 77 (1955), 778–782 | DOI | MR | Zbl

[3] Dadok J., Kac V., “Polar representations”, J. Algebra, 92 (1985), 504–524 | DOI | MR | Zbl

[4] De Lellis C., Spadaro E. N., $Q$-valued functions revisited, Mem. Amer. Math. Soc., 211, 2011, vi+79 pp., arXiv: 0803.0060 | DOI | MR

[5] Derksen H., Kemper G., Computational invariant theory, Encyclopaedia of Mathematical Sciences, 130, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl

[6] Ghisi M., Gobbino M., “Higher order Glaeser inequalities and optimal regularity of roots of real functions”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12 (2013), 1001–1021, arXiv: 1107.2694 | MR

[7] Grafakos L., Classical Fourier analysis, Graduate Texts in Mathematics, 249, Springer, New York, 2014 | DOI | MR | Zbl

[8] Kriegl A., Losik M., Michor P. W., Rainer A., “Lifting smooth curves over invariants for representations of compact Lie groups. III”, J. Lie Theory, 16 (2006), 579–600, arXiv: math.RT/0504101 | MR | Zbl

[9] Losik M., Michor P. W., Rainer A., “A generalization of Puiseux's theorem and lifting curves over invariants”, Rev. Mat. Complut., 25 (2012), 139–155, arXiv: 0904.2068 | DOI | MR | Zbl

[10] Luna D., “Slices étales”, Mém. Soc. Math. France, 33 (1973), 81–105 | DOI | MR | Zbl

[11] Mukai S., An introduction to invariants and moduli, Cambridge Studies in Advanced Mathematics, 81, Cambridge University Press, Cambridge, 2003 | MR | Zbl

[12] Neusel M. D., Smith L., Invariant theory of finite groups, Mathematical Surveys and Monographs, 94, Amer. Math. Soc., Providence, RI, 2002 | DOI | MR | Zbl

[13] Parusiński A., Rainer A., “A new proof of Bronshtein's theorem”, J. Hyperbolic Differ. Equ., 12 (2015), 671–688, arXiv: 1309.2150 | DOI | MR | Zbl

[14] Parusiński A., Rainer A., “Lifting differentiable curves from orbit spaces”, Transform. Groups, 21 (2016), 153–179, arXiv: 1406.2485 | DOI | MR | Zbl

[15] Parusiński A., Rainer A., “Regularity of roots of polynomials”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 16 (2016), 481–517, arXiv: 1309.2151 | MR | Zbl

[16] Parusiński A., Rainer A., “Optimal Sobolev regularity of roots of polynomials”, Ann. Sci. Éc. Norm. Supér. (4), 51 (2018), 1343–1387, arXiv: 1506.01512 | DOI | MR | Zbl

[17] Parusiński A., Rainer A., “Selections of bounded variation for roots of smooth polynomials”, Selecta Math. (N.S.), 26 (2020), 13, 40 pp., arXiv: 1705.10492 | DOI | MR | Zbl

[18] Schwarz G. W., “Lifting smooth homotopies of orbit spaces”, Inst. Hautes Études Sci. Publ. Math., 51, 1980, 37–135 | DOI | MR | Zbl

[19] Serre J.-P., “Groupes finis d'automorphismes d'anneaux locaux réguliers” (Paris, 1967), Colloque d'{A}lgèbre, 8, Secrétariat mathématique, Paris, 1968, 11 pp. | MR | Zbl

[20] Shephard G. C., Todd J. A., “Finite unitary reflection groups”, Canad. J. Math., 6 (1954), 274–304 | DOI | MR | Zbl

[21] Weyl H., The classical groups. Their invariants and representations, Princeton University Press, Princeton, N.J., 1939 | MR