@article{SIGMA_2021_17_a36,
author = {Adam Parusi\'nski and Armin Rainer},
title = {Sobolev {Lifting} over {Invariants}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a36/}
}
Adam Parusiński; Armin Rainer. Sobolev Lifting over Invariants. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a36/
[1] Almgren Jr. F.J., Almgren's big regularity paper: $Q$-valued functions minimizing Dirichlet's integral and the regularity of area-minimizing rectifiable currents up to codimension 2, World Scientific Monograph Series in Mathematics, 1, World Sci. Publ. Co., Inc., River Edge, NJ, 2000 | DOI | MR
[2] Chevalley C., “Invariants of finite groups generated by reflections”, Amer. J. Math., 77 (1955), 778–782 | DOI | MR | Zbl
[3] Dadok J., Kac V., “Polar representations”, J. Algebra, 92 (1985), 504–524 | DOI | MR | Zbl
[4] De Lellis C., Spadaro E. N., $Q$-valued functions revisited, Mem. Amer. Math. Soc., 211, 2011, vi+79 pp., arXiv: 0803.0060 | DOI | MR
[5] Derksen H., Kemper G., Computational invariant theory, Encyclopaedia of Mathematical Sciences, 130, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl
[6] Ghisi M., Gobbino M., “Higher order Glaeser inequalities and optimal regularity of roots of real functions”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12 (2013), 1001–1021, arXiv: 1107.2694 | MR
[7] Grafakos L., Classical Fourier analysis, Graduate Texts in Mathematics, 249, Springer, New York, 2014 | DOI | MR | Zbl
[8] Kriegl A., Losik M., Michor P. W., Rainer A., “Lifting smooth curves over invariants for representations of compact Lie groups. III”, J. Lie Theory, 16 (2006), 579–600, arXiv: math.RT/0504101 | MR | Zbl
[9] Losik M., Michor P. W., Rainer A., “A generalization of Puiseux's theorem and lifting curves over invariants”, Rev. Mat. Complut., 25 (2012), 139–155, arXiv: 0904.2068 | DOI | MR | Zbl
[10] Luna D., “Slices étales”, Mém. Soc. Math. France, 33 (1973), 81–105 | DOI | MR | Zbl
[11] Mukai S., An introduction to invariants and moduli, Cambridge Studies in Advanced Mathematics, 81, Cambridge University Press, Cambridge, 2003 | MR | Zbl
[12] Neusel M. D., Smith L., Invariant theory of finite groups, Mathematical Surveys and Monographs, 94, Amer. Math. Soc., Providence, RI, 2002 | DOI | MR | Zbl
[13] Parusiński A., Rainer A., “A new proof of Bronshtein's theorem”, J. Hyperbolic Differ. Equ., 12 (2015), 671–688, arXiv: 1309.2150 | DOI | MR | Zbl
[14] Parusiński A., Rainer A., “Lifting differentiable curves from orbit spaces”, Transform. Groups, 21 (2016), 153–179, arXiv: 1406.2485 | DOI | MR | Zbl
[15] Parusiński A., Rainer A., “Regularity of roots of polynomials”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 16 (2016), 481–517, arXiv: 1309.2151 | MR | Zbl
[16] Parusiński A., Rainer A., “Optimal Sobolev regularity of roots of polynomials”, Ann. Sci. Éc. Norm. Supér. (4), 51 (2018), 1343–1387, arXiv: 1506.01512 | DOI | MR | Zbl
[17] Parusiński A., Rainer A., “Selections of bounded variation for roots of smooth polynomials”, Selecta Math. (N.S.), 26 (2020), 13, 40 pp., arXiv: 1705.10492 | DOI | MR | Zbl
[18] Schwarz G. W., “Lifting smooth homotopies of orbit spaces”, Inst. Hautes Études Sci. Publ. Math., 51, 1980, 37–135 | DOI | MR | Zbl
[19] Serre J.-P., “Groupes finis d'automorphismes d'anneaux locaux réguliers” (Paris, 1967), Colloque d'{A}lgèbre, 8, Secrétariat mathématique, Paris, 1968, 11 pp. | MR | Zbl
[20] Shephard G. C., Todd J. A., “Finite unitary reflection groups”, Canad. J. Math., 6 (1954), 274–304 | DOI | MR | Zbl
[21] Weyl H., The classical groups. Their invariants and representations, Princeton University Press, Princeton, N.J., 1939 | MR