Functional Relations on Anisotropic Potts Models: from Biggs Formula to the Tetrahedron Equation
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We explore several types of functional relations on the family of multivariate Tutte polynomials: the Biggs formula and the star-triangle ($Y-\Delta$) transformation at the critical point $n=2$. We deduce the theorem of Matiyasevich and its inverse from the Biggs formula, and we apply this relation to construct the recursion on the parameter $n$. We provide two different proofs of the Zamolodchikov tetrahedron equation satisfied by the star-triangle transformation in the case of $n=2$ multivariate Tutte polynomial, we extend the latter to the case of valency 2 points and show that the Biggs formula and the star-triangle transformation commute.
Keywords: local Yang–Baxter equation, Biggs formula, Potts model, Ising model.
Mots-clés : tetrahedron equation
@article{SIGMA_2021_17_a34,
     author = {Boris Bychkov and Anton Kazakov and Dmitry Talalaev},
     title = {Functional {Relations} on {Anisotropic} {Potts} {Models:} from {Biggs} {Formula} to the {Tetrahedron} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a34/}
}
TY  - JOUR
AU  - Boris Bychkov
AU  - Anton Kazakov
AU  - Dmitry Talalaev
TI  - Functional Relations on Anisotropic Potts Models: from Biggs Formula to the Tetrahedron Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a34/
LA  - en
ID  - SIGMA_2021_17_a34
ER  - 
%0 Journal Article
%A Boris Bychkov
%A Anton Kazakov
%A Dmitry Talalaev
%T Functional Relations on Anisotropic Potts Models: from Biggs Formula to the Tetrahedron Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a34/
%G en
%F SIGMA_2021_17_a34
Boris Bychkov; Anton Kazakov; Dmitry Talalaev. Functional Relations on Anisotropic Potts Models: from Biggs Formula to the Tetrahedron Equation. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a34/

[1] Atiyah M., “Topological quantum field theories”, Inst. Hautes Études Sci. Publ. Math., 68 (1988), 175–186 | DOI | MR | Zbl

[2] Baxter R. J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982 | MR | Zbl

[3] Beaudin L., Ellis-Monaghan J., Pangborn G., Shrock R., “A little statistical mechanics for the graph theorist”, Discrete Math., 310 (2010), 2037–2053, arXiv: 0804.2468 | DOI | MR | Zbl

[4] Berenstein A., Fomin S., Zelevinsky A., “Parametrizations of canonical bases and totally positive matrices”, Adv. Math., 122 (1996), 49–149 | DOI | MR | Zbl

[5] Biggs N., Interaction models, London Mathematical Society Lecture Note Series, 30, Cambridge University Press, Cambridge – New York – Melbourne, 1977 | MR | Zbl

[6] Bychkov B., Kazakov A., Talalaev D., “Tutte polynomials of vertex-weighted graphs and cohomology of groups”, Theoret. and Math. Phys. (to appear)

[7] Cardy J. L., “Critical percolation in finite geometries”, J. Phys. A: Math. Gen., 25 (1992), L201–L206, arXiv: hep-th/9111026 | DOI | Zbl

[8] El-Showk S., Paulos M. F., Poland D., Rychkov S., Simmons-Duffin D., Vichi A., “Solving the 3d Ising model with the conformal bootstrap II $c$-minimization and precise critical exponents”, J. Stat. Phys., 157 (2014), 869–914, arXiv: 1403.4545 | DOI | MR | Zbl

[9] Ellis-Monaghan J. A., Merino C., “Graph polynomials and their applications I: The Tutte polynomial”, Structural Analysis of Complex Networks, Birkhäuser/Springer, New York, 2011, 219–255, arXiv: 0803.3079 | DOI | MR | Zbl

[10] Ellis-Monaghan J. A., Moffatt I., “The Tutte–Potts connection in the presence of an external magnetic field”, Adv. in Appl. Math., 47 (2011), 772–782, arXiv: 1005.5470 | DOI | MR | Zbl

[11] Galashin P., Pylyavskyy P., “Ising model and the positive orthogonal Grassmannian”, Duke Math. J., 169 (2020), 1877–1942, arXiv: 1807.03282 | DOI | MR | Zbl

[12] Gorbounov V., Talalaev D., “Electrical varieties as vertex integrable statistical models”, J. Phys. A: Math. Theor., 53 (2020), 454001, 28 pp., arXiv: 1905.03522 | DOI | MR

[13] Grimmett G., “Three theorems in discrete random geometry”, Probab. Surv., 8 (2011), 403–441, arXiv: 1110.2395 | DOI | MR | Zbl

[14] Huang Y.-T., Wen C., Xie D., “The positive orthogonal Grassmannian and loop amplitudes of ABJM”, J. Phys. A: Math. Theor., 47 (2014), 474008, 48 pp., arXiv: 1402.1479 | DOI | MR | Zbl

[15] Kashaev R. M., “On discrete three-dimensional equations associated with the local Yang–Baxter relation”, Lett. Math. Phys., 38 (1996), 389–397, arXiv: solv-int/9512005 | DOI | MR | Zbl

[16] Kook W., Reiner V., Stanton D., “A convolution formula for the Tutte polynomial”, J. Combin. Theory Ser. B, 76 (1999), 297–300, arXiv: math.CO/9712232 | DOI | MR | Zbl

[17] Korepanov I. G., Algebraic integrable dynamical systems, 2+1-dimensional models in wholly discrete space-time, and inhomogeneous models in 2-dimensional statistical physics, arXiv: solv-int/9506003

[18] Korepanov I. G., Sharygin G. I., Talalaev D. V., “Cohomologies of {$n$}-simplex relations”, Math. Proc. Cambridge Philos. Soc., 161 (2016), 203–222, arXiv: 1409.3127 | DOI | MR | Zbl

[19] Lam T., Pylyavskyy P., “Inverse problem in cylindrical electrical networks”, SIAM J. Appl. Math., 72 (2012), 767–788, arXiv: 1104.4998 | DOI | MR | Zbl

[20] Matiyasevich Yu.V., On a certain representation of the chromatic polynomial, arXiv: 0903.1213 | MR

[21] Sergeev S. M., “Solutions of the functional tetrahedron equation connected with the local Yang–Baxter equation for the ferro-electric condition”, Lett. Math. Phys., 45 (1998), 113–119, arXiv: solv-int/9709006 | DOI | MR | Zbl

[22] Sokal A. D., “The multivariate Tutte polynomial (alias Potts model) for graphs and matroids”, Surveys in Combinatorics 2005, London Math. Soc. Lecture Note Ser., 327, Cambridge University Press, Cambridge, 2005, 173–226, arXiv: math.CO/0503607 | DOI | MR | Zbl

[23] Tutte W. T., “A ring in graph theory”, Classic Papers in Combinatorics, Modern Birkhäuser Classics, Birkhäuser, Boston, 2009, 124–138 | DOI | MR

[24] Wu F.Y., “Knot theory and statistical mechanics”, Rev. Modern Phys., 64 (1992), 1099–1131 | DOI | MR

[25] Zamolodchikov A. B., “Tetrahedra equations and integrable systems in three-dimensional space”, Soviet Phys. JETP, 52 (1980), 325–336 | MR