@article{SIGMA_2021_17_a33,
author = {Boris Botvinnik and Mark G. Walsh},
title = {Homotopy {Invariance} of the {Space} of {Metrics} with {Positive} {Scalar} {Curvature} on {Manifolds} with {Singularities}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a33/}
}
TY - JOUR AU - Boris Botvinnik AU - Mark G. Walsh TI - Homotopy Invariance of the Space of Metrics with Positive Scalar Curvature on Manifolds with Singularities JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a33/ LA - en ID - SIGMA_2021_17_a33 ER -
%0 Journal Article %A Boris Botvinnik %A Mark G. Walsh %T Homotopy Invariance of the Space of Metrics with Positive Scalar Curvature on Manifolds with Singularities %J Symmetry, integrability and geometry: methods and applications %D 2021 %V 17 %U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a33/ %G en %F SIGMA_2021_17_a33
Boris Botvinnik; Mark G. Walsh. Homotopy Invariance of the Space of Metrics with Positive Scalar Curvature on Manifolds with Singularities. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a33/
[1] Bérard-Bergery L., “Scalar curvature and isometry group”, Spectra of Riemannian Manifolds, Kaigai Publications, Tokyo, 1983, 9–28 | MR
[2] Besse A. L., “Einstein manifolds”, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987 | DOI | MR | Zbl
[3] Botvinnik B., “Manifolds with singularities accepting a metric of positive scalar curvature”, Geom. Topol., 5 (2001), 683–718, arXiv: math.DG/9910177 | DOI | MR | Zbl
[4] Botvinnik B., Ebert J., Randal-Williams O., “Infinite loop spaces and positive scalar curvature”, Invent. Math., 209 (2017), 749–835, arXiv: 1411.7408 | DOI | MR | Zbl
[5] Botvinnik B., Piazza P., Rosenberg J., Positive scalar curvature on simply connected spin pseudomanifolds, arXiv: 1908.04420 | MR
[6] Botvinnik B., Piazza P., Rosenberg J., Positive scalar curvature on spin pseudomanifolds: the fundamental group and secondary invariants, arXiv: 2005.02744 | MR
[7] Botvinnik B., Rosenberg J., Positive scalar curvature on manifolds with fibered singularities, arXiv: 1808.06007
[8] Chernysh V., On the homotopy type of the space $\mathcal{R}^+(M)$, arXiv: math.GT/0405235 | MR
[9] Ebert J., Frenck G., The Gromov–Lawson–Chernysh surgery theorem, arXiv: 1807.06311 | MR
[10] Ebert J., Randal-Williams O., “Infinite loop spaces and positive scalar curvature in the presence of a fundamental group”, Geom. Topol., 23 (2019), 1549–1610, arXiv: 1711.11363 | DOI | MR | Zbl
[11] Ebert J., Randal-Williams O., The positive scalar curvature cobordism category, arXiv: 1904.12951
[12] Gromov M., Lawson Jr. H.B., “The classification of simply connected manifolds of positive scalar curvature”, Ann. of Math., 111 (1980), 423–434 | DOI | MR | Zbl
[13] Perlmutter N., Cobordism categories and parametrized Morse theory, arXiv: 1703.01047
[14] Perlmutter N., Parametrized Morse theory and positive scalar curvature, arXiv: 1705.02754
[15] Stolz S., “Simply connected manifolds of positive scalar curvature”, Ann. of Math., 136 (1992), 511–540 | DOI | MR | Zbl
[16] Tuschmann W., Wraith D. J., Moduli spaces of Riemannian metrics, Oberwolfach Seminars, 46, Birkhäuser Verlag, Basel, 2015 | DOI | MR | Zbl
[17] Walsh M., Metrics of positive scalar curvature and generalised Morse functions, v. I, Mem. Amer. Math. Soc., 209, 2011, xviii+80 pp., arXiv: 0811.1245 | DOI | MR
[18] Walsh M., “Cobordism invariance of the homotopy type of the space of positive scalar curvature metrics”, Proc. Amer. Math. Soc., 141 (2013), 2475–2484, arXiv: 1109.6878 | DOI | MR | Zbl
[19] Walsh M., “$H$-spaces, loop spaces and the space of positive scalar curvature metrics on the sphere”, Geom. Topol., 18 (2014), 2189–2243, arXiv: 1301.5670 | DOI | MR | Zbl
[20] Walsh M., “The space of positive scalar curvature metrics on a manifold with boundary”, New York J. Math., 26 (2020), 853–930, arXiv: 1411.2423 | MR | Zbl