Homotopy Invariance of the Space of Metrics with Positive Scalar Curvature on Manifolds with Singularities
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study manifolds, $X_{\Sigma}$, with fibred singularities, more specifically, a relevant space ${\mathcal R}^{\rm psc}(X_{\Sigma})$ of Riemannian metrics with positive scalar curvature. Our main goal is to prove that the space ${\mathcal R}^{\rm psc}(X_{\Sigma})$ is homotopy invariant under certain surgeries on $X_{\Sigma}$.
Keywords: positive scalar curvature metrics, manifolds with singularities, surgery.
@article{SIGMA_2021_17_a33,
     author = {Boris Botvinnik and Mark G. Walsh},
     title = {Homotopy {Invariance} of the {Space} of {Metrics} with {Positive} {Scalar} {Curvature} on {Manifolds} with {Singularities}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a33/}
}
TY  - JOUR
AU  - Boris Botvinnik
AU  - Mark G. Walsh
TI  - Homotopy Invariance of the Space of Metrics with Positive Scalar Curvature on Manifolds with Singularities
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a33/
LA  - en
ID  - SIGMA_2021_17_a33
ER  - 
%0 Journal Article
%A Boris Botvinnik
%A Mark G. Walsh
%T Homotopy Invariance of the Space of Metrics with Positive Scalar Curvature on Manifolds with Singularities
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a33/
%G en
%F SIGMA_2021_17_a33
Boris Botvinnik; Mark G. Walsh. Homotopy Invariance of the Space of Metrics with Positive Scalar Curvature on Manifolds with Singularities. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a33/

[1] Bérard-Bergery L., “Scalar curvature and isometry group”, Spectra of Riemannian Manifolds, Kaigai Publications, Tokyo, 1983, 9–28 | MR

[2] Besse A. L., “Einstein manifolds”, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987 | DOI | MR | Zbl

[3] Botvinnik B., “Manifolds with singularities accepting a metric of positive scalar curvature”, Geom. Topol., 5 (2001), 683–718, arXiv: math.DG/9910177 | DOI | MR | Zbl

[4] Botvinnik B., Ebert J., Randal-Williams O., “Infinite loop spaces and positive scalar curvature”, Invent. Math., 209 (2017), 749–835, arXiv: 1411.7408 | DOI | MR | Zbl

[5] Botvinnik B., Piazza P., Rosenberg J., Positive scalar curvature on simply connected spin pseudomanifolds, arXiv: 1908.04420 | MR

[6] Botvinnik B., Piazza P., Rosenberg J., Positive scalar curvature on spin pseudomanifolds: the fundamental group and secondary invariants, arXiv: 2005.02744 | MR

[7] Botvinnik B., Rosenberg J., Positive scalar curvature on manifolds with fibered singularities, arXiv: 1808.06007

[8] Chernysh V., On the homotopy type of the space $\mathcal{R}^+(M)$, arXiv: math.GT/0405235 | MR

[9] Ebert J., Frenck G., The Gromov–Lawson–Chernysh surgery theorem, arXiv: 1807.06311 | MR

[10] Ebert J., Randal-Williams O., “Infinite loop spaces and positive scalar curvature in the presence of a fundamental group”, Geom. Topol., 23 (2019), 1549–1610, arXiv: 1711.11363 | DOI | MR | Zbl

[11] Ebert J., Randal-Williams O., The positive scalar curvature cobordism category, arXiv: 1904.12951

[12] Gromov M., Lawson Jr. H.B., “The classification of simply connected manifolds of positive scalar curvature”, Ann. of Math., 111 (1980), 423–434 | DOI | MR | Zbl

[13] Perlmutter N., Cobordism categories and parametrized Morse theory, arXiv: 1703.01047

[14] Perlmutter N., Parametrized Morse theory and positive scalar curvature, arXiv: 1705.02754

[15] Stolz S., “Simply connected manifolds of positive scalar curvature”, Ann. of Math., 136 (1992), 511–540 | DOI | MR | Zbl

[16] Tuschmann W., Wraith D. J., Moduli spaces of Riemannian metrics, Oberwolfach Seminars, 46, Birkhäuser Verlag, Basel, 2015 | DOI | MR | Zbl

[17] Walsh M., Metrics of positive scalar curvature and generalised Morse functions, v. I, Mem. Amer. Math. Soc., 209, 2011, xviii+80 pp., arXiv: 0811.1245 | DOI | MR

[18] Walsh M., “Cobordism invariance of the homotopy type of the space of positive scalar curvature metrics”, Proc. Amer. Math. Soc., 141 (2013), 2475–2484, arXiv: 1109.6878 | DOI | MR | Zbl

[19] Walsh M., “$H$-spaces, loop spaces and the space of positive scalar curvature metrics on the sphere”, Geom. Topol., 18 (2014), 2189–2243, arXiv: 1301.5670 | DOI | MR | Zbl

[20] Walsh M., “The space of positive scalar curvature metrics on a manifold with boundary”, New York J. Math., 26 (2020), 853–930, arXiv: 1411.2423 | MR | Zbl