Mots-clés : affine group
@article{SIGMA_2021_17_a32,
author = {\"Orn Arnaldsson and Francis Valiquette},
title = {Invariants of {Surfaces} in {Three-Dimensional} {Affine} {Geometry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a32/}
}
Örn Arnaldsson; Francis Valiquette. Invariants of Surfaces in Three-Dimensional Affine Geometry. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a32/
[1] Abdalla B. E., Dillen F., Vrancken L., “Affine homogeneous surfaces in ${\mathbb R}^3$ with vanishing Pick invariant”, Abh. Math. Sem. Univ. Hamburg, 67 (1997), 105–115 | DOI | MR | Zbl
[2] Blaschke W., Vorlesungen über Geometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie II: Affine Differentialgeometrie, Verlag Von Julius Springer, Berlin, 1923 | DOI | MR
[3] Chen Z., Merker J., On differential invariants of parabolic surfaces, arXiv: 1908.07867 | MR
[4] Dillen F., Martínez A., Milán F., Garcia Santos F., Vrancken L., “On the Pick invariant, the affine mean curvature and the Gauss curvature of affine surfaces”, Results Math., 20 (1991), 622–642 | DOI | MR | Zbl
[5] Doubrov B., Komrakov B., Rabinovich M., “Homogeneous surfaces in the three-dimensional affine geometry”, Geometry and Topology of Submanifolds VIII (Brussels, 1995/Nordfjordeid, 1995), World Sci. Publ., River Edge, NJ, 1996, 168–178 | DOI | MR | Zbl
[6] Doubrov B., Merker J., The D., Classification of simply-transitive Levi non-degenerate hypersurfaces in $\mathbb{C}^3$, arXiv: 2010.06334
[7] Eastwood M., Ezhov V., “On affine normal forms and a classification of homogeneous surfaces in affine three-space”, Geom. Dedicata, 77 (1999), 11–69 | DOI | MR | Zbl
[8] Fels M., Olver P. J., “Moving coframes. II Regularization and theoretical foundations”, Acta Appl. Math., 55 (1999), 127–208 | DOI | MR | Zbl
[9] Griffiths P., “On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry”, Duke Math. J., 41 (1974), 775–814 | DOI | MR | Zbl
[10] Guggenheimer H. W., Differential geometry, McGraw-Hill Book Co., Inc., New York – San Francisco – Toronto – London, 1963 | MR | Zbl
[11] Hubert E., Olver P. J., “Differential invariants of conformal and projective surfaces”, SIGMA, 3 (2007), 097, 15 pp., arXiv: 0710.0519 | DOI | MR | Zbl
[12] Jensen G. R., Higher order contact of submanifolds of homogeneous spaces, Lecture Notes in Math., 610, Springer-Verlag, Berlin – New York, 1977 | DOI | MR | Zbl
[13] Kogan I. A., Olver P. J., “Invariant Euler–Lagrange equations and the invariant variational bicomplex”, Acta Appl. Math., 76 (2003), 137–193 | DOI | MR | Zbl
[14] Kruglikov B., Lychagin V., “Invariants of pseudogroup actions: homological methods and finiteness theorem”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 1131–1165, arXiv: math.DG/0511711 | DOI | MR | Zbl
[15] Kruglikov B., Lychagin V., “Global Lie–Tresse theorem”, Selecta Math. (N.S.), 22 (2016), 1357–1411, arXiv: 1111.5480 | DOI | MR | Zbl
[16] Lie S., Scheffers G., Vorlesungen über continuierliche Gruppen mit Geometrischen und anderen Anwendungen, B.G. Teubner, Leipzig, 1893 | MR
[17] Mansfield E. L., A practical guide to the invariant calculus, Cambridge Monographs on Applied and Computational Mathematics, 26, Cambridge University Press, Cambridge, 2010 | DOI | MR | Zbl
[18] Merker J., Affine rigidity without integration, arXiv: 1903.00889
[19] Nomizu K., Sasaki T., Affine differential geometry, Cambridge Tracts in Mathematics, 111, Cambridge University Press, Cambridge, 1994 | MR | Zbl
[20] Olver P. J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[21] Olver P. J., “Moving frames: a brief survey”, Symmetry and Perturbation Theory, eds. D. Bambusi, G. Gaeta, M. Cadoni, World Sci., Singapore, 2001, 143–150 | DOI | MR | Zbl
[22] Olver P. J., “Generating differential invariants”, J. Math. Anal. Appl., 333 (2007), 450–471 | DOI | MR | Zbl
[23] Olver P. J., “Differential invariants of surfaces”, Differential Geom. Appl., 27 (2009), 230–239 | DOI | MR | Zbl
[24] Olver P. J., “Recursive moving frames”, Results Math., 60 (2011), 423–452 | DOI | MR | Zbl
[25] Olver P. J., Equivariant moving frames for Euclidean surfaces, Preprint, University of Minnesota, 2016 https://www-users.math.umn.edu/õlver/mf_/eus.pdf
[26] Olver P. J., Pohjanpelto J., “Differential invariants for Lie pseudo-groups”, Gröbner bases in symbolic analysis, Radon Ser. Comput. Appl. Math., 2, Walter de Gruyter, Berlin, 2007, 217–243 | DOI | MR | Zbl
[27] Schirokow P. A., Schirokow A. P., Affine Differentialgeometrie, B.G. Teubner Verlagsgesellschaft, Leipzig, 1962 | MR | Zbl
[28] Seiler W. M., Involution: the formal theory of differential equations and its applications in computer algebra, Algorithms and Computation in Mathematics, 24, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl