Representations of the Lie Superalgebra $\mathfrak{osp}(1|2n)$ with Polynomial Bases
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a particular class of infinite-dimensional representations of $\mathfrak{osp}(1|2n)$. These representations $L_n(p)$ are characterized by a positive integer $p$, and are the lowest component in the $p$-fold tensor product of the metaplectic representation of $\mathfrak{osp}(1|2n)$. We construct a new polynomial basis for $L_n(p)$ arising from the embedding $\mathfrak{osp}(1|2np) \supset \mathfrak{osp}(1|2n)$. The basis vectors of $L_n(p)$ are labelled by semi-standard Young tableaux, and are expressed as Clifford algebra valued polynomials with integer coefficients in $np$ variables. Using combinatorial properties of these tableau vectors it is deduced that they form indeed a basis. The computation of matrix elements of a set of generators of $\mathfrak{osp}(1|2n)$ on these basis vectors requires further combinatorics, such as the action of a Young subgroup on the horizontal strips of the tableau.
Keywords: representation theory, Lie superalgebras, Clifford analysis
Mots-clés : Young tableaux, parabosons.
@article{SIGMA_2021_17_a30,
     author = {Asmus K. Bisbo and Hendrik De Bie and Joris Van der Jeugt},
     title = {Representations of the {Lie} {Superalgebra} $\mathfrak{osp}(1|2n)$ with {Polynomial} {Bases}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a30/}
}
TY  - JOUR
AU  - Asmus K. Bisbo
AU  - Hendrik De Bie
AU  - Joris Van der Jeugt
TI  - Representations of the Lie Superalgebra $\mathfrak{osp}(1|2n)$ with Polynomial Bases
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a30/
LA  - en
ID  - SIGMA_2021_17_a30
ER  - 
%0 Journal Article
%A Asmus K. Bisbo
%A Hendrik De Bie
%A Joris Van der Jeugt
%T Representations of the Lie Superalgebra $\mathfrak{osp}(1|2n)$ with Polynomial Bases
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a30/
%G en
%F SIGMA_2021_17_a30
Asmus K. Bisbo; Hendrik De Bie; Joris Van der Jeugt. Representations of the Lie Superalgebra $\mathfrak{osp}(1|2n)$ with Polynomial Bases. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a30/

[1] Blank J., Havlíček M., “Irreducible $\ast$-representations of {L}ie superalgebras $B(0,n)$ with finite-degenerated vacuum”, J. Math. Phys., 27 (1986), 2823–2831 | DOI | MR | Zbl

[2] Chaturvedi S., “Canonical partition functions for parastatistical systems of any order”, Phys. Rev. E, 54 (1996), 1378–1382, arXiv: hep-th/9509150 | DOI

[3] Cheng S.-J., Kwon J.-H., Wang W., “Kostant homology formulas for oscillator modules of Lie superalgebras”, Adv. Math., 224 (2010), 1548–1588, arXiv: 0901.0247 | DOI | MR | Zbl

[4] Cheng S.-J., Wang W., Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics, 144, Amer. Math. Soc., Providence, RI, 2012 | DOI | MR | Zbl

[5] Cheng S.-J., Zhang R. B., “Howe duality and combinatorial character formula for orthosymplectic Lie superalgebras”, Adv. Math., 182 (2004), 124–172, arXiv: math.RT/0206036 | DOI | MR | Zbl

[6] Colombo F., Sabadini I., Sommen F., Struppa D. C., Analysis of Dirac systems and computational algebra, Progress in Mathematical Physics, 39, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI | MR | Zbl

[7] Deser S., Zumino B., “Broken supersymmetry and supergravity”, Phys. Rev. Lett., 38 (1977), 1433–1436 | DOI | MR

[8] Dobrev V., Salom I., “Positive energy unitary irreducible representations of the superalgebras ${\mathfrak{osp}}(1|2n,\mathbb{R})$ and character formulae”, Proceedings of 8th Mathematical Physics Meeting, Summer School and Conference on Modern Mathematical Physics (Belgrade, August 24–31, 2014), Belgrade Inst. Phys., 2015, 59–81, arXiv: 1506.02272 | MR

[9] Dobrev V. K., Zhang R. B., “Positive energy unitary irreducible representations of the superalgebras ${\mathfrak{osp}}(1|2n,\mathbb R)$”, Phys. Atomic Nuclei, 68 (2005), 1660–1669, arXiv: hep-th/0402039 | DOI | MR

[10] Frappat L., Sciarrino A., Sorba P., Dictionary on Lie algebras and superalgebras, Academic Press, Inc., San Diego, CA, 2000 | MR | Zbl

[11] Ganchev A.Ch., Palev T. D., “A Lie superalgebraic interpretation of the para-Bose statistics”, J. Math. Phys., 21 (1980), 797–799 | DOI | MR | Zbl

[12] Green H. S., “A generalized method of field quantization”, Phys. Rev., 90 (1953), 270–273 | DOI | MR | Zbl

[13] Greenberg O. W., Macrae K. I., “Locally gauge-invariant formulation of parastatistics”, Nuclear Phys. B, 219 (1983), 358–366 | DOI | MR

[14] Greenberg O. W., Messiah A. M.L., “Selection rules for parafields and the absence of para particles in nature”, Phys. Rev., 138 (1965), B1155–B1167 | DOI | MR

[15] Iachello F., Van Isacker P., The interacting boson-fermion model, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1991 | DOI | MR

[16] Ivanov E. A., Sorin A. S., “Superfield formulation of ${\rm OSp}(1,4)$ supersymmetry”, J. Phys. A: Math. Gen., 13 (1980), 1159–1188 | DOI | MR

[17] Kac V. G., “Lie superalgebras”, Adv. Math., 26 (1977), 8–96 | DOI | MR | Zbl

[18] Kanakoglou K., Daskaloyannis C., “A braided look at Green ansatz for parabosons”, J. Math. Phys., 48 (2007), 113516, 19 pp., arXiv: 0901.4320 | DOI | MR | Zbl

[19] King R. C., Palev T. D., Stoilova N. I., Van der Jeugt J., “The non-commutative and discrete spatial structure of a 3D Wigner quantum oscillator”, J. Phys. A: Math. Gen., 36 (2003), 4337–4362, arXiv: hep-th/0304136 | DOI | MR | Zbl

[20] Lávička R., Souček V., Fischer decomposition for spinor valued polynomials in several variables, arXiv: 1708.01426

[21] Lievens S., Stoilova N. I., Van der Jeugt J., “Harmonic oscillators coupled by springs: discrete solutions as a Wigner quantum system”, J. Math. Phys., 47 (2006), 113504, 23 pp., arXiv: hep-th/0606192 | DOI | MR | Zbl

[22] Lievens S., Stoilova N. I., Van der Jeugt J., “The paraboson Fock space and unitary irreducible representations of the Lie superalgebra ${\mathfrak{osp}}(1|2n)$”, Comm. Math. Phys., 281 (2008), 805–826, arXiv: 0706.4196 | DOI | MR | Zbl

[23] Loday J.-L., Popov T., “Parastatistics algebra, Young tableaux and the super plactic monoid”, Int. J. Geom. Methods Mod. Phys., 5 (2008), 1295–1314, arXiv: 0810.0844 | DOI | MR | Zbl

[24] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR

[25] Molev A. I., “Gelfand–Tsetlin bases for classical Lie algebras”, Handbook of Algebra, Handb. Algebr., 4, Elsevier/North-Holland, Amsterdam, 2006, 109–170, arXiv: math.RT/0211289 | DOI | MR | Zbl

[26] Nishiyama K., “Oscillator representations for orthosymplectic algebras”, J. Algebra, 129 (1990), 231–262 | DOI | MR | Zbl

[27] Ohnuki Y., Kamefuchi S., Quantum field theory and parastatistics, University of Tokyo Press, Tokyo; Springer-Verlag, Berlin, 1982 | MR | Zbl

[28] Salom I., Role of the orthogonal group in construction of ${\mathfrak{osp}}(1\vert 2n)$ representations, arXiv: 1307.1452

[29] Sezgin E., Sundell P., “Supersymmetric higher spin theories”, J. Phys. A: Math. Theor., 46 (2013), 214022, 25 pp., arXiv: 1208.6019 | DOI | MR | Zbl

[30] Stanley R. P., Enumerative combinatorics, v. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl

[31] Vasiliev M. A., “Conformal higher spin symmetries of 4D massless supermultiplets and ${\mathfrak{osp}}(L,2M)$ invariant equations in generalized (super)space”, Phys. Rev. D, 66 (2002), 066006, 34 pp., arXiv: hep-th/0106149 | DOI | MR