@article{SIGMA_2021_17_a3,
author = {Minos Axenides and Emmanuel Floratos and Stam Nicolis},
title = {The {Arithmetic} {Geometry} of {AdS}$_2$ and its {Continuum} {Limit}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a3/}
}
TY - JOUR AU - Minos Axenides AU - Emmanuel Floratos AU - Stam Nicolis TI - The Arithmetic Geometry of AdS$_2$ and its Continuum Limit JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a3/ LA - en ID - SIGMA_2021_17_a3 ER -
Minos Axenides; Emmanuel Floratos; Stam Nicolis. The Arithmetic Geometry of AdS$_2$ and its Continuum Limit. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a3/
[1] Almheiri A., Dong X., Harlow D., “Bulk locality and quantum error correction in AdS/CFT”, J. High Energy Phys., 2015:4 (2015), 163, 34 pp., arXiv: 1411.7041 | DOI | MR | Zbl
[2] Almheiri A., Marolf D., Polchinski J., Sully J., Black holes: complementarity or firewalls?, J. High Energy Phys., 2013:2 (2013), 062, 20 pp., arXiv: 1207.3123 | DOI | MR | Zbl
[3] Arnol'd V.I., Avez A., Ergodic problems of classical mechanics, The Mathematical Physics Monograph Series, W.A. Benjamin, Inc., New York –Amsterdam, 1968 | MR | Zbl
[4] Athanasiu G. G., Floratos E. G., “Coherent states in finite quantum mechanics”, Nuclear Phys. B, 425 (1994), 343–364 | DOI | MR | Zbl
[5] Athanasiu G. G., Floratos E. G., Nicolis S., “Fast quantum maps”, J. Phys. A: Math. Gen., 31 (1998), L655–L662, arXiv: math-ph/9805012 | DOI | MR | Zbl
[6] Axenides M., Floratos E., Nicolis S., “Modular discretization of the AdS$_{2}$/CFT$_{1}$ holography”, J. High Energy Phys., 2014:2 (2014), 109, 31 pp., arXiv: 1306.5670 | DOI | MR
[7] Axenides M., Floratos E., Nicolis S., “Chaotic information processing by extremal black holes”, Internat. J. Modern Phys. D, 24 (2015), 1542012, 7 pp., arXiv: 1504.00483 | DOI | MR | Zbl
[8] Axenides M., Floratos E., Nicolis S., “The quantum cat map on the modular discretization of extremal black hole horizons”, Eur. Phys. J. C, 78 (2018), 412, 15 pp., arXiv: 1608.07845 | DOI
[9] Banks T., “Holographic space-time and quantum information”, Front. Phys., 8 (2020), 111, 10 pp., arXiv: 2001.08205 | DOI
[10] Bao N., Carroll S. M., Singh A., “The Hilbert space of quantum gravity is locally finite-dimensional”, Internat. J. Modern Phys. D, 26 (2017), 1743013, 5 pp., arXiv: 1704.00066 | DOI | MR | Zbl
[11] Baragar A., “Lattice points on hyperboloids of one sheet”, New York J. Math., 20 (2014), 1253–1268 | MR | Zbl
[12] Bengtsson I., Anti-de Sitter space, http://3dhouse.se/ingemar/Kurs.pdf
[13] Bousso R., “Black hole entropy and the Bekenstein bound”, Jacob Bekenstein, The Conservative Revolutionary, World Scientific, 2019, 139–158, arXiv: 1810.01880 | DOI | MR
[14] Bressoud D., Wagon S., A course in computational number theory, Key College Publishing, Emeryville, CA, 2000 | MR | Zbl
[15] Cadoni M., Mignemi S., “Asymptotic symmetries of ${\rm AdS}_2$ and conformal group in $d=1$”, Nuclear Phys. B, 557 (1999), 165–180, arXiv: hep-th/9902040 | DOI | MR | Zbl
[16] Carlip S., “The small-scale structure of spacetime”, Foundations of Space and Time, Cambridge University Press, Cambridge, 2012, 69–84, arXiv: 1009.1136 | DOI | MR | Zbl
[17] Carlip S., Mosna R. A., Pitelli J. P.M., “Vacuum fluctuations and the small scale structure of spacetime”, Phys. Rev. Lett., 107 (2011), 021303, 4 pp., arXiv: 1103.5993 | DOI
[18] Cesaratto E., Plagne A., Vallée B., “On the non-randomness of modular arithmetic progressions: a solution to a problem by VI Arnold,”, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, Discrete Math. Theor. Comput. Sci. Proc., AG, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2006, 271–287 | MR
[19] Coxeter H. S.M., “Discrete groups generated by reflections”, Ann. of Math., 35 (1934), 588–621 | DOI | MR
[20] Duke W., Rudnick Z., Sarnak P., “Density of integer points on affine homogeneous varieties”, Duke Math. J., 71 (1993), 143–179 | DOI | MR | Zbl
[21] Dyson F. J., Falk H., “Period of a discrete cat mapping”, Amer. Math. Monthly, 99 (1992), 603–614 | DOI | MR | Zbl
[22] Feingold A. J., Kleinschmidt A., Nicolai H., “Hyperbolic Weyl groups and the four normed division algebras”, J. Algebra, 322 (2009), 1295–1339, arXiv: 0805.3018 | DOI | MR | Zbl
[23] Floratos E. G., “The Heisenberg–Weyl group on the $Z_N\times Z_N$ discretized torus membrane”, Phys. Lett. B, 228 (1989), 335–340 | DOI | MR
[24] Gibbons G. W., “Anti-de-Sitter spacetime and its uses”, Mathematical and Quantum Aspects of Relativity and Cosmology (Pythagoreon, 1998), Lecture Notes in Phys., 537, Springer, Berlin, 2000, 102–142, arXiv: 1110.1206 | DOI | MR | Zbl
[25] Giddings S. B., “Black holes, quantum information, and unitary evolution”, Phys. Rev. D, 85 (2012), 124063, 17 pp., arXiv: 1201.1037 | DOI
[26] Gubser S. S., “A $p$-adic version of AdS/CFT”, Adv. Theor. Math. Phys., 21 (2017), 1655–1678, arXiv: 1705.00373 | DOI | MR
[27] Hawking S. W., “Spacetime foam”, Nuclear Phys. B, 144 (1978), 349–362 | DOI | MR
[28] Hawking S. W., “Information loss in black holes”, Phys. Rev. D, 72 (2005), 084013, 4 pp., arXiv: hep-th/0507171 | DOI | MR
[29] Horadam A. F., “A generalized Fibonacci sequence”, Amer. Math. Monthly, 68 (1961), 455–459 | DOI | MR | Zbl
[30] Jefferson R. A., Myers R. C., “Circuit complexity in quantum field theory”, J. High Energy Phys., 2017:10 (2017), 107, 81 pp., arXiv: 1707.08570 | DOI | MR | Zbl
[31] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl
[32] Knuth D. E., The art of computer programming, v. 2, Seminumerical algorithms, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1981 | MR | Zbl
[33] Kontorovich A. V., “The hyperbolic lattice point count in infinite volume with applications to sieves”, Duke Math. J., 149 (2009), 1–36, arXiv: 0712.1391 | DOI | MR | Zbl
[34] Lenstra H., Profinite groups, 2003 http://websites.math.leidenuniv.nl/algebra/Lenstra-Profinite.pdf
[35] Lenstra H., “Profinite Fibonacci numbers”, Nieuw Arch. Wiskd., 6 (2005), 297–300 | MR | Zbl
[36] Lenstra H., “Profinite number theory”, Eur. Math. Soc. Newsl., 100 (2016), 14–18 | MR | Zbl
[37] Lowry-Duda D., On some variants of the Gauss circle problem, arXiv: 1704.02376
[38] Ma C.-T., “Lattice AdS geometry and continuum limit”, Internat. J. Modern Phys. A, 35 (2020), 2050079, 12 pp., arXiv: 1807.08871 | DOI | MR
[39] Maldacena J., “Black holes and quantum information”, Nature Rev. Phys., 2 (2020), 123–125 | DOI
[40] Maldacena J., Susskind L., “Cool horizons for entangled black holes”, Fortschr. Phys., 61 (2013), 781–811, arXiv: 1306.0533 | DOI | MR | Zbl
[41] Naik V., Order formulas for symplectic groups, https://groupprops.subwiki.org/wiki/Order_formulas_for_symplectic_groups
[42] Oh H., Shah N. A., “Limits of translates of divergent geodesics and integral points on one-sheeted hyperboloids”, Israel J. Math., 199 (2014), 915–931, arXiv: 1104.4988 | DOI | MR | Zbl
[43] Papadodimas K., Raju S., “An infalling observer in AdS/CFT”, J. High Energy Phys., 2013:10 (2013), 212, 73 pp., arXiv: 1211.6767 | DOI | MR
[44] Patricot C., A group theoretical approach to causal structures and positive energy on space-times, arXiv: hep-th/0403040
[45] Preskill J., “Quantum information and physics: some future directions”, J. Modern Opt., 47 (2000), 127–137, arXiv: quant-ph/9904022 | DOI | MR
[46] Rawnsley J., “On the universal covering group of the real symplectic group”, J. Geom. Phys., 62 (2012), 2044–2058 | DOI | MR | Zbl
[47] Schild A., “Discrete space-time and integral Lorentz transformations”, Phys. Rev., 73 (1948), 414–415 | DOI | MR | Zbl
[48] Schild A., “Discrete space-time and integral Lorentz transformations”, Canad. J. Math., 1 (1949), 29–47 | DOI | MR | Zbl
[49] Sen A., “Arithmetic of quantum entropy function”, J. High Energy Phys., 2009:8 (2009), 068, 22 pp., arXiv: 0903.1477 | DOI | MR
[50] Sen A., “Quantum entropy function from $\rm AdS_2/CFT_1$ correspondence”, Internat. J. Modern Phys. A, 24 (2009), 4225–4244, arXiv: 0809.3304 | DOI | MR | Zbl
[51] Shanks D., “A sieve method for factoring numbers of the form $n^{2}+1$”, Math. Tables Aids Comput., 13 (1959), 78–86 | DOI | MR | Zbl
[52] Srednicki M., “Chaos and quantum thermalization”, Phys. Rev. E, 50 (1994), 888–901, arXiv: cond-mat/9403051 | DOI
[53] Susskind L., Dear qubitzers, GR = QM, arXiv: 1708.03040
[54] Susskind L., Black holes and complexity classes, arXiv: 1802.02175 | MR
[55] Susskind L., Three lectures on complexity and black holes, arXiv: 1810.11563
[56] 't Hooft G., “How quantization of gravity leads to a discrete space-time”, J. Phys. Conf. Ser., 701 (2016), 012014, 14 pp. | DOI | MR
[57] Tan L., “The group of rational points on the unit circle”, Math. Mag., 69 (1996), 163–171 | DOI | MR | Zbl
[58] Verlinde E., “On the origin of gravity and the laws of Newton”, J. High Energy Phys., 2011:4 (2011), 029, 27 pp., arXiv: 1001.0785 | DOI | MR | Zbl
[59] Vinberg E. B., “Discrete groups generated by reflections in Lobačevskiĭ spaces”, Math. USSR Sb., 1 (1967), 429–444 | DOI | MR | Zbl
[60] Witten E., “Quantum gravity in de Sitter space”, Strings, 2001 (Mumbai), Clay Math. Proc., 1, Amer. Math. Soc., Providence, RI, 2002, 351–365, arXiv: hep-th/0106109 | MR | Zbl