Mots-clés : compact Lie group, principal action, principal orbit
@article{SIGMA_2021_17_a29,
author = {Alexandru Chirvasitu},
title = {Prescribed {Riemannian} {Symmetries}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a29/}
}
Alexandru Chirvasitu. Prescribed Riemannian Symmetries. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a29/
[1] Alexandrino M. M., Bettiol R. G., Lie groups and geometric aspects of isometric actions, Springer, Cham, 2015 | DOI | MR | Zbl
[2] Audin M., The topology of torus actions on symplectic manifolds, Progress in Mathematics, 93, Birkhäuser Verlag, Basel, 1991 | DOI | MR | Zbl
[3] Bedford E., Dadok J., “Bounded domains with prescribed group of automorphisms”, Comment. Math. Helv., 62 (1987), 561–572 | DOI | MR | Zbl
[4] Berger M., A panoramic view of Riemannian geometry, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl
[5] Besse A. L., Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987 | DOI | MR | Zbl
[6] Bourbaki N., Elements of mathematics. General topology, v. 2, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass. – London – Don Mills, Ont., 1966 | MR
[7] Bredon G. E., Introduction to compact transformation groups, Pure and Applied Mathematics, 46, Academic Press, New York – London, 1972 | MR | Zbl
[8] Chavel I., Riemannian geometry – a modern introduction, Cambridge Tracts in Mathematics, 108, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[9] Chow B., Knopf D., The Ricci flow: an introduction, Mathematical Surveys and Monographs, 110, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl
[10] do Carmo M. P., Riemannian geometry, Mathematics: Theory Applications, Birkhäuser Boston, Inc., Boston, MA, 1992 | MR | Zbl
[11] Doignon J. P., “Any finite group is the group of some binary, convex polytope”, Discrete Comput. Geom., 59 (2018), 451–460, arXiv: 1602.02987 | DOI | MR | Zbl
[12] Ebin D. G., “The manifold of Riemannian metrics”, Global Analysis (Berkeley, Calif., 1968), Proc. Sympos. Pure Math., XV, Amer. Math. Soc., Providence, R.I., 1970, 11–40 | DOI | MR
[13] Engelking R., General topology, Sigma Series in Pure Mathematics, 6, 2nd ed., Heldermann Verlag, Berlin, 1989 | MR | Zbl
[14] Frucht R., “Herstellung von Graphen mit vorgegebener abstrakter Gruppe”, Compositio Math., 6 (1939), 239–250 | MR
[15] Frucht R., “Graphs of degree three with a given abstract group”, Canad. J. Math., 1 (1949), 365–378 | DOI | MR | Zbl
[16] Gao S., Kechris A. S., On the classification of Polish metric spaces up to isometry, Mem. Amer. Math. Soc., 161, 2003, viii+78 pp. | DOI | MR
[17] Haefliger A., “Feuilletages riemanniens”, Astérisque, 177–178, no. 707, 1989, 183–197 | MR | Zbl
[18] Kobayashi S., Transformation groups in differential geometry, Classics in Mathematics, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl
[19] Kobayashi S., Nomizu K., Foundations of differential geometry, v. I, Wiley Classics Library, John Wiley Sons, Inc., New York, 1996 | MR
[20] Koszul J. L., “Sur certains groupes de transformations de Lie”, Géométrie différentielle (Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, 1953), Centre National de la Recherche Scientifique, Paris, 1953, 137–141 | MR | Zbl
[21] Malicki M., Solecki S., “Isometry groups of separable metric spaces”, Math. Proc. Cambridge Philos. Soc., 146 (2009), 67–81 | DOI | MR | Zbl
[22] Melleray J., “Compact metrizable groups are isometry groups of compact metric spaces”, Proc. Amer. Math. Soc., 136 (2008), 1451–1455, arXiv: math.GR/0505509 | DOI | MR | Zbl
[23] Montgomery D., Yang C. T., “The existence of a slice”, Ann. of Math., 65 (1957), 108–116 | DOI | MR | Zbl
[24] Munkres J. R., Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000 | MR | Zbl
[25] Myers S. B., Steenrod N. E., “The group of isometries of a Riemannian manifold”, Ann. of Math., 40 (1939), 400–416 | DOI | MR
[26] Narici L., Beckenstein E., Topological vector spaces, Pure and Applied Mathematics (Boca Raton), 296, 2nd ed., CRC Press, Boca Raton, FL, 2011 | MR | Zbl
[27] Niemiec P., “Isometry groups of proper metric spaces”, Trans. Amer. Math. Soc., 366 (2014), 2597–2623, arXiv: 1201.5675 | DOI | MR | Zbl
[28] Petersen P., Riemannian geometry, Graduate Texts in Mathematics, 171, 3rd ed., Springer, Cham, 2016 | DOI | MR | Zbl
[29] Pigola S., Veronelli G., “The smooth Riemannian extension problem”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 20 (2020), 1507–1551, arXiv: 1606.08320 | MR | Zbl
[30] Sabidussi G., “Graphs with given group and given graph-theoretical properties”, Canad. J. Math., 9 (1957), 515–525 | DOI | MR | Zbl
[31] Sabidussi G., “Graphs with given infinite group”, Monatsh. Math., 64 (1960), 64–67 | DOI | MR | Zbl
[32] Saerens R., Zame W. R., “The isometry groups of manifolds and the automorphism groups of domains”, Trans. Amer. Math. Soc., 301 (1987), 413–429 | DOI | MR | Zbl
[33] Schulte E., Williams G. I., “Polytopes with preassigned automorphism groups”, Discrete Comput. Geom., 54 (2015), 444–458, arXiv: 1505.06253 | DOI | MR | Zbl
[34] Trèves F., Topological vector spaces, distributions and kernels, Dover Publications, Inc., Mineola, NY, 2006 | MR | Zbl