Twisted Traces and Positive Forms on Quantized Kleinian Singularities of Type A
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Following [Beem C., Peelaers W., Rastelli L., Comm. Math. Phys. 354 (2017), 345–392] and [Etingof P., Stryker D., SIGMA 16 (2020), 014, 28 pages], we undertake a detailed study of twisted traces on quantizations of Kleinian singularities of type $A_{n-1}$. In particular, we give explicit integral formulas for these traces and use them to determine when a trace defines a positive Hermitian form on the corresponding algebra. This leads to a classification of unitary short star-products for such quantizations, a problem posed by Beem, Peelaers and Rastelli in connection with 3-dimensional superconformal field theory. In particular, we confirm their conjecture that for $n\le 4$ a unitary short star-product is unique and compute its parameter as a function of the quantization parameters, giving exact formulas for the numerical functions by Beem, Peelaers and Rastelli. If $n=2$, this, in particular, recovers the theory of unitary spherical Harish-Chandra bimodules for ${\mathfrak{sl}}_2$. Thus the results of this paper may be viewed as a starting point for a generalization of the theory of unitary Harish-Chandra bimodules over enveloping algebras of reductive Lie algebras [Vogan Jr. D.A., Annals of Mathematics Studies, Vol. 118, Princeton University Press, Princeton, NJ, 1987] to more general quantum algebras. Finally, we derive recurrences to compute the coefficients of short star-products corresponding to twisted traces, which are generalizations of discrete Painlevé systems.
Keywords: star-product, trace.
Mots-clés : orthogonal polynomial, quantization
@article{SIGMA_2021_17_a28,
     author = {Pavel Etingof and Daniil Klyuev and Eric Rains and Douglas Stryker},
     title = {Twisted {Traces} and {Positive} {Forms} on {Quantized} {Kleinian} {Singularities} of {Type~A}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a28/}
}
TY  - JOUR
AU  - Pavel Etingof
AU  - Daniil Klyuev
AU  - Eric Rains
AU  - Douglas Stryker
TI  - Twisted Traces and Positive Forms on Quantized Kleinian Singularities of Type A
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a28/
LA  - en
ID  - SIGMA_2021_17_a28
ER  - 
%0 Journal Article
%A Pavel Etingof
%A Daniil Klyuev
%A Eric Rains
%A Douglas Stryker
%T Twisted Traces and Positive Forms on Quantized Kleinian Singularities of Type A
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a28/
%G en
%F SIGMA_2021_17_a28
Pavel Etingof; Daniil Klyuev; Eric Rains; Douglas Stryker. Twisted Traces and Positive Forms on Quantized Kleinian Singularities of Type A. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a28/

[1] Bavula V. V., “Generalized Weyl algebras and their representations”, St. Petersburg Math. J., 4 (1993), 71–92 | MR

[2] Beem C., Peelaers W., Rastelli L., “Deformation quantization and superconformal symmetry in three dimensions”, Comm. Math. Phys., 354 (2017), 345–392, arXiv: 1601.05378 | DOI | MR | Zbl

[3] Bleher P., Its A., “Semiclassical asymptotics of orthogonal polynomials, Riemann–Hilbert problem, and universality in the matrix model”, Ann. of Math., 150 (1999), 185–266, arXiv: math-ph/9907025 | DOI | MR | Zbl

[4] Dedushenko M., Fan Y., Pufu S. S., Yacoby R., “Coulomb branch operators and mirror symmetry in three dimensions”, J. High Energy Phys., 2018:4 (2018), 037, 111 pp., arXiv: 1712.09384 | DOI | MR

[5] Dedushenko M., Pufu S. S., Yacoby R., “A one-dimensional theory for Higgs branch operators”, J. High Energy Phys., 2018:3 (2018), 138, 83 pp., arXiv: 1610.00740 | DOI | MR | Zbl

[6] Etingof P., Stryker D., “Short star-products for filtered quantizations, I”, SIGMA, 16 (2020), 014, 28 pp., arXiv: 1909.13588 | DOI | MR | Zbl

[7] Fokas A. S., Its A. R., Kitaev A. V., “The isomonodromy approach to matrix models in $2$D quantum gravity”, Comm. Math. Phys., 147 (1992), 395–430 | DOI | MR | Zbl

[8] Klyuev D., On unitarizable Harish-Chandra bimodules for deformations of Kleinian singularities, arXiv: 2003.11508

[9] Klyuev D., Twisted traces and positive forms on generalized $q$-Weyl algebras, in preparation

[10] Koekoek R., Swarttouw R. F., The Askey scheme of hypergeometric orthogonal polynomials and its $q$-analogue, arXiv: math.CA/9602214

[11] Losev I., “Finite-dimensional representations of $W$-algebras”, Duke Math. J., 159 (2011), 99–143, arXiv: 0807.1023 | DOI | MR | Zbl

[12] Magnus A. P., “Associated Askey–Wilson polynomials as Laguerre–Hahn orthogonal polynomials”, Orthogonal Polynomials and their Applications (Segovia, 1986), Lecture Notes in Math., 1329, Springer, Berlin, 1988, 261–278 | DOI | MR

[13] Rains E. M., Generalized Hitchin systems on rational surfaces, arXiv: 1307.4033

[14] Szegő G., Orthogonal polynomials, American Mathematical Society Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975 | MR | Zbl

[15] Vogan Jr. D.A., Unitary representations of reductive Lie groups, Annals of Mathematics Studies, 118, Princeton University Press, Princeton, NJ, 1987 | MR | Zbl