Mots-clés : orthogonal polynomial, quantization
@article{SIGMA_2021_17_a28,
author = {Pavel Etingof and Daniil Klyuev and Eric Rains and Douglas Stryker},
title = {Twisted {Traces} and {Positive} {Forms} on {Quantized} {Kleinian} {Singularities} of {Type~A}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a28/}
}
TY - JOUR AU - Pavel Etingof AU - Daniil Klyuev AU - Eric Rains AU - Douglas Stryker TI - Twisted Traces and Positive Forms on Quantized Kleinian Singularities of Type A JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a28/ LA - en ID - SIGMA_2021_17_a28 ER -
%0 Journal Article %A Pavel Etingof %A Daniil Klyuev %A Eric Rains %A Douglas Stryker %T Twisted Traces and Positive Forms on Quantized Kleinian Singularities of Type A %J Symmetry, integrability and geometry: methods and applications %D 2021 %V 17 %U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a28/ %G en %F SIGMA_2021_17_a28
Pavel Etingof; Daniil Klyuev; Eric Rains; Douglas Stryker. Twisted Traces and Positive Forms on Quantized Kleinian Singularities of Type A. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a28/
[1] Bavula V. V., “Generalized Weyl algebras and their representations”, St. Petersburg Math. J., 4 (1993), 71–92 | MR
[2] Beem C., Peelaers W., Rastelli L., “Deformation quantization and superconformal symmetry in three dimensions”, Comm. Math. Phys., 354 (2017), 345–392, arXiv: 1601.05378 | DOI | MR | Zbl
[3] Bleher P., Its A., “Semiclassical asymptotics of orthogonal polynomials, Riemann–Hilbert problem, and universality in the matrix model”, Ann. of Math., 150 (1999), 185–266, arXiv: math-ph/9907025 | DOI | MR | Zbl
[4] Dedushenko M., Fan Y., Pufu S. S., Yacoby R., “Coulomb branch operators and mirror symmetry in three dimensions”, J. High Energy Phys., 2018:4 (2018), 037, 111 pp., arXiv: 1712.09384 | DOI | MR
[5] Dedushenko M., Pufu S. S., Yacoby R., “A one-dimensional theory for Higgs branch operators”, J. High Energy Phys., 2018:3 (2018), 138, 83 pp., arXiv: 1610.00740 | DOI | MR | Zbl
[6] Etingof P., Stryker D., “Short star-products for filtered quantizations, I”, SIGMA, 16 (2020), 014, 28 pp., arXiv: 1909.13588 | DOI | MR | Zbl
[7] Fokas A. S., Its A. R., Kitaev A. V., “The isomonodromy approach to matrix models in $2$D quantum gravity”, Comm. Math. Phys., 147 (1992), 395–430 | DOI | MR | Zbl
[8] Klyuev D., On unitarizable Harish-Chandra bimodules for deformations of Kleinian singularities, arXiv: 2003.11508
[9] Klyuev D., Twisted traces and positive forms on generalized $q$-Weyl algebras, in preparation
[10] Koekoek R., Swarttouw R. F., The Askey scheme of hypergeometric orthogonal polynomials and its $q$-analogue, arXiv: math.CA/9602214
[11] Losev I., “Finite-dimensional representations of $W$-algebras”, Duke Math. J., 159 (2011), 99–143, arXiv: 0807.1023 | DOI | MR | Zbl
[12] Magnus A. P., “Associated Askey–Wilson polynomials as Laguerre–Hahn orthogonal polynomials”, Orthogonal Polynomials and their Applications (Segovia, 1986), Lecture Notes in Math., 1329, Springer, Berlin, 1988, 261–278 | DOI | MR
[13] Rains E. M., Generalized Hitchin systems on rational surfaces, arXiv: 1307.4033
[14] Szegő G., Orthogonal polynomials, American Mathematical Society Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975 | MR | Zbl
[15] Vogan Jr. D.A., Unitary representations of reductive Lie groups, Annals of Mathematics Studies, 118, Princeton University Press, Princeton, NJ, 1987 | MR | Zbl