Mots-clés : orthocomplementation, renormalisation.
@article{SIGMA_2021_17_a26,
author = {Pierre Clavier and Li Guo and Sylvie Paycha and Bin Zhang},
title = {From {Orthocomplementations} to {Locality}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a26/}
}
Pierre Clavier; Li Guo; Sylvie Paycha; Bin Zhang. From Orthocomplementations to Locality. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a26/
[1] Berline N., Vergne M., “Local Euler–Maclaurin formula for polytopes”, Mosc. Math. J., 7 (2007), 355–386, arXiv: math.CO/0507256 | DOI | MR | Zbl
[2] Birkhoff G., Lattice theory, American Mathematical Society Colloquium Publications | MR
[3] Cattaneo G., Manià A., “Abstract orthogonality and orthocomplementation”, Proc. Cambridge Philos. Soc., 76 (1974), 115–132 | DOI | MR | Zbl
[4] Cattaneo G., Nisticò G., “Orthogonality and orthocomplementations in the axiomatic approach to quantum mechanics: remarks about some critiques”, J. Math. Phys., 25 (1984), 513–531 | DOI | MR | Zbl
[5] Chajda I., Länger H., “The lattice of subspaces of a vector space over a finite field”, Soft Comput., 23 (2019), 3261–3267 | DOI | Zbl
[6] Clavier P., Guo L., Paycha S., Zhang B., “An algebraic formulation of the locality principle in renormalisation”, Eur. J. Math., 5 (2019), 356–394, arXiv: 1711.00884 | DOI | MR | Zbl
[7] Clavier P., Guo L., Paycha S., Zhang B., “Renormalisation via locality morphisms”, Rev. Colombiana Mat., 53 (2019), 113–141, arXiv: 1810.03210 | DOI | MR | Zbl
[8] Clavier P., Guo L., Paycha S., Zhang B., “Renormalisation and locality: branched zeta values”, Algebraic Combinatorics, Resurgence, Moulds and Applications (Carma), Irma Lectures in Math. and Theor. Phys., 32, eds. F. Chapoton, F. Fauvet, C. Malvenuto, J.Y. Thibon, Eur. Math. Soc. Publishing House, Berlin, 2020, 85–132, arXiv: 1807.07630 | DOI | Zbl
[9] Clavier P., Guo L., Paycha S., Zhang B., “Locality and renormalization: universal properties and integrals on trees”, J. Math. Phys., 61 (2020), 022301, 19 pp., arXiv: 1811.01215 | DOI | MR | Zbl
[10] Connes A., Kreimer D., “Renormalization in quantum field theory and the Riemann–Hilbert problem. I The Hopf algebra structure of graphs and the main theorem”, Comm. Math. Phys., 210 (2000), 249–273, arXiv: hep-th/9912092 | DOI | MR | Zbl
[11] Dang N. V., Zhang B., “Renormalization of Feynman amplitudes on manifolds by spectral zeta regularization and blow-ups”, J. Eur. Math. Soc. (JEMS), 23 (2021), 503–556, arXiv: 1712.03490 | DOI | MR | Zbl
[12] Engesser K., Gabbay D. M., Lehmann D. (eds.), Handbook of quantum logic and quantum structures: quantum logic, Elsevier Science B. V., Amsterdam, 2007 | DOI | MR | Zbl
[13] Faure C.-A., Frölicher A., Modern projective geometry, Mathematics and its Applications, 521, Kluwer Academic Publishers, Dordrecht, 2000 | DOI | MR | Zbl
[14] Foissy L., “Les algèbres de {H}opf des arbres enracinés décorés. I”, Bull. Sci. Math., 126 (2002), 193–239, arXiv: math.QA/0105212 | DOI | MR | Zbl
[15] Foissy L., “Les algèbres de {H}opf des arbres enracinés décorés. II”, Bull. Sci. Math., 126 (2002), 249–288 | DOI | MR | Zbl
[16] Garoufalidis S., Pommersheim J., “Sum-integral interpolators and the Euler–Maclaurin formula for polytopes”, Trans. Amer. Math. Soc., 364 (2012), 2933–2958, arXiv: 1002.3522 | DOI | MR | Zbl
[17] Grätzer G., Lattice theory. First concepts and distributive lattices, W.H. Freeman and Co., San Francisco, Calif., 1971 | MR | Zbl
[18] Grätzer G., Lattice theory: foundation, Birkhäuser/Springer Basel AG, Basel, 2011 | DOI | MR | Zbl
[19] Gross H., Quadratic forms in infinite-dimensional vector spaces, Progress in Mathematics, 1, Birkhäuser, Boston, Mass., 1979 | DOI | MR | Zbl
[20] Guo L., Paycha S., Zhang B., “Algebraic Birkhoff factorization and the Euler–Maclaurin formula on cones”, Duke Math. J., 166 (2017), 537–571, arXiv: 1306.3420 | DOI | MR | Zbl
[21] Guo L., Paycha S., Zhang B., “A conical approach to Laurent expansions for multivariate meromorphic germs with linear poles”, Pacific J. Math., 307 (2020), 159–196, arXiv: 1501.00426 | DOI | MR | Zbl
[22] Hedlíková J., Pulmannová S., “Orthogonality spaces and atomistic orthocomplemented lattices”, Czechoslovak Math. J., 41(116) (1991), 8–23 | DOI | MR | Zbl
[23] Kalmbach G., Orthomodular lattices, London Mathematical Society Monographs, 18, Academic Press Inc., London, 1983 | MR | Zbl
[24] MacLaren M. D., “Atomic orthocomplemented lattices”, Pacific J. Math., 14 (1964), 597–612 | DOI | MR | Zbl
[25] Maeda F., Maeda S., Theory of symmetric lattices, Die Grundlehren der mathematischen Wissenschaften, 173, Springer-Verlag, New York – Berlin, 1970 | DOI | MR | Zbl
[26] Manchon D., Hopf algebras, from basics to applications to renormalization, arXiv: math.QA/0408405
[27] Padmanabhan R., Rudeanu S., Axioms for lattices and Boolean algebras, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008 | DOI | MR | Zbl
[28] Rutherford D. E., Introduction to lattice theory, Hafner Publishing Co., New York, 1965 | MR
[29] Szymańska-Bartman M., “Weak orthogonalities on a partially ordered set”, Contributions to General Algebra, Proc. Klagenfurt Conf. (Klagenfurt, 1978), Heyn, Klagenfurt, 1979, 381–388 | MR