@article{SIGMA_2021_17_a24,
author = {Vladimir V. Bazhanov and Gleb A. Kotousov and Sergii M. Koval and Sergei L. Lukyanov},
title = {Some {Algebraic} {Aspects} of the {Inhomogeneous} {Six-Vertex} {Model}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a24/}
}
TY - JOUR AU - Vladimir V. Bazhanov AU - Gleb A. Kotousov AU - Sergii M. Koval AU - Sergei L. Lukyanov TI - Some Algebraic Aspects of the Inhomogeneous Six-Vertex Model JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a24/ LA - en ID - SIGMA_2021_17_a24 ER -
%0 Journal Article %A Vladimir V. Bazhanov %A Gleb A. Kotousov %A Sergii M. Koval %A Sergei L. Lukyanov %T Some Algebraic Aspects of the Inhomogeneous Six-Vertex Model %J Symmetry, integrability and geometry: methods and applications %D 2021 %V 17 %U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a24/ %G en %F SIGMA_2021_17_a24
Vladimir V. Bazhanov; Gleb A. Kotousov; Sergii M. Koval; Sergei L. Lukyanov. Some Algebraic Aspects of the Inhomogeneous Six-Vertex Model. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a24/
[1] Alcaraz F. C., Barber M. N., Batchelor M. T., “Conformal invariance, the $XXZ$ chain and the operator content of two-dimensional critical systems”, Ann. Physics, 182 (1988), 280–343 | DOI | MR | Zbl
[2] Baxter R. J., Private communication, 2020
[3] Baxter R. J., “Generalized ferroelectric model on a square lattice”, Stud. Appl. Math., 50 (1971), 51–69 | DOI | MR
[4] Baxter R. J., “Partition function of the eight-vertex lattice model”, Ann. Physics, 70 (1972), 193–228 | DOI | MR | Zbl
[5] Baxter R. J., “Eight-vertex model in lattice statistics and one-dimensional anisotropic heisenberg chain. I. Some fundamental eigenvectors”, Ann. Physics, 76 (1973), 1–24 | DOI | MR | Zbl
[6] Baxter R. J., “Solvable eight-vertex model on an arbitrary planar lattice”, Philos. Trans. Roy. Soc. London Ser. A, 289 (1978), 315–346 | DOI | MR
[7] Bazhanov V., Bobenko A., Reshetikhin N., “Quantum discrete sine-Gordon model at roots of $1$: integrable quantum system on the integrable classical background”, Comm. Math. Phys., 175 (1996), 377–400 | DOI | MR | Zbl
[8] Bazhanov V. V., Kotousov G. A., Koval S. M., Lukyanov S. L., “On the scaling behaviour of the alternating spin chain”, J. High Energy Phys., 2019:8 (2019), 087, 30 pp., arXiv: 1903.05033 | DOI | MR
[9] Bazhanov V. V., Kotousov G. A., Koval S. M., Lukyanov S. L., “Scaling limit of the ${\mathcal Z}_2$ invariant inhomogeneous six-vertex model”, Nuclear Phys. B, 965 (2021), 115337, 156 pp., arXiv: 2010.10613 | DOI | MR
[10] Bazhanov V. V., Lukyanov S. L., Zamolodchikov A. B., “Integrable structure of conformal field theory. II ${\rm Q}$-operator and DDV equation”, Comm. Math. Phys., 190 (1997), 247–278, arXiv: hep-th/9604044 | DOI | MR | Zbl
[11] Bazhanov V. V., Lukyanov S. L., Zamolodchikov A. B., “Integrable structure of conformal field theory. III The Yang–Baxter relation”, Comm. Math. Phys., 200 (1999), 297–324, arXiv: hep-th/9805008 | DOI | MR | Zbl
[12] Bazhanov V. V., Mangazeev V. V., Sergeev S. M., “Faddeev–Volkov solution of the Yang–Baxter equation and discrete conformal symmetry”, Nuclear Phys. B, 784 (2007), 234–258, arXiv: hep-th/0703041 | DOI | MR | Zbl
[13] Bethe H., “Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette”, Z. Phys., 71 (1931), 205–226 | DOI
[14] Bobenko A., Kutz N., Pinkall U., “The discrete quantum pendulum”, Phys. Lett. A, 177 (1993), 399–404 | DOI | MR
[15] Bobenko A. I., Springborn B. A., “Variational principles for circle patterns and Koebe's theorem”, Trans. Amer. Math. Soc., 356 (2004), 659–689, arXiv: math.GT/0203250 | DOI | MR | Zbl
[16] Candu C., Ikhlef Y., “Nonlinear integral equations for the ${\rm SL}(2,{\mathbb R})/{\rm U}(1)$ black hole sigma model”, J. Phys. A: Math. Theor., 46 (2013), 415401, 31 pp., arXiv: 1306.2646 | DOI | MR | Zbl
[17] Destri C., de Vega H. J., “Light-cone lattice approach to fermionic theories in $2${D} The massive Thirring model”, Nuclear Phys. B, 290 (1987), 363–391 | DOI | MR
[18] Faddeev L., Volkov A.Yu., “Hirota equation as an example of an integrable symplectic map”, Lett. Math. Phys., 32 (1994), 125–135, arXiv: hep-th/9405087 | DOI | MR | Zbl
[19] Faddeev L. D., Reshetikhin N.Yu., “Integrability of the principal chiral field model in $1+1$ dimension”, Ann. Physics, 167 (1986), 227–256 | DOI | MR
[20] Frahm H., Martins M. J., “Phase diagram of an integrable alternating ${\rm U}_q[\mathfrak{sl}(2|1)]$ superspin chain”, Nuclear Phys. B, 862 (2012), 504–552, arXiv: 1202.4676 | DOI | MR | Zbl
[21] Frahm H., Seel A., “The staggered six-vertex model: conformal invariance and corrections to scaling”, Nuclear Phys. B, 879 (2014), 382–406, arXiv: 1311.6911 | DOI | MR | Zbl
[22] Gaudin M., McCoy B. M., Wu T.T., “Normalization sum for the Bethe's hypothesis wave functions of the Heisenberg–Ising chain”, Phys. Rev. D, 23 (1981), 417–419 | DOI | MR
[23] Ikhlef Y., Jacobsen J., Saleur H., “A staggered six-vertex model with non-compact continuum limit”, Nuclear Phys. B, 789 (2008), 483–524, arXiv: cond-mat/0612037 | DOI | MR | Zbl
[24] Ikhlef Y., Jacobsen J., Saleur H., “The $\mathbb Z_2$ staggered vertex model and its applications”, J. Phys. A: Math. Theor., 43 (2010), 225201, 37 pp., arXiv: 0911.3003 | DOI | MR | Zbl
[25] Ikhlef Y., Jacobsen J., Saleur H., “An integrable spin chain for the ${\rm SL}(2,{\mathbb R})/{\rm U}(1)$ black hole sigma model”, Phys. Rev. Lett., 108 (2012), 081601, 6 pp., arXiv: 1109.1119 | DOI
[26] Jacobsen J. L., Saleur H., “The antiferromagnetic transition for the square-lattice Potts model”, Nuclear Phys. B, 743 (2006), 207–248, arXiv: cond-mat/0512058 | DOI | MR | Zbl
[27] Japaridze G. I., Nersesyan A. A., Wiegmann P. B., “Regularized integrable version of the one-dimensional quantum sine-Gordon model”, Phys. Scripta, 27 (1983), 5–7 | DOI | MR | Zbl
[28] Kadanoff L. P., Brown C. A., “Correlation functions on the critical lines of the Baxter and Ashkin–Teller models”, Ann. Physics, 121 (1979), 318–342 | DOI
[29] Khoroshkin S. M., Tolstoy V. N., “Universal $R$-matrix for quantized (super)algebras”, Comm. Math. Phys., 141 (1991), 599–617 | DOI | MR | Zbl
[30] Korepin V. E., “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl
[31] Lieb E. H., “Residual entropy of square ice”, Phys. Rev., 162 (1967), 162–172 | DOI
[32] Lieb E. H., Wu F.Y., “Two-dimensional ferroelectric models”, Phase Transitions and Critical Phenomena, eds. C. Domb, M.S. Green, Academic Press, London, 1972, 331–490 | MR
[33] Luther A., Peschel I., “Calculation of critical exponents in two-dimensions from quantum field theory in one-dimension”, Phys. Rev. B, 12 (1975), 3908–3917 | DOI
[34] Pauling L., “The structure and entropy of ice and of other crystals with some randomness of atomic arrangement”, J. Amer. Chem. Soc., 57 (1935), 2680–2684 | DOI
[35] Polyakov A., Wiegmann P. B., “Theory of nonabelian Goldstone bosons in two dimensions”, Phys. Lett. B, 131 (1983), 121–126 | DOI | MR
[36] Reshetikhin N.Yu., “Lectures on the integrability of the six-vertex model”, Exact Methods in Low-Dimensional Statistical Physics and Quantum Computing, Oxford University Press, Oxford, 2010, 197–266, arXiv: 1010.5031 | MR | Zbl
[37] Sklyanin E. K., Takhtadzhyan L. A., Faddeev L. D., “Quantum inverse problem method. I”, Theoret. and Math. Phys., 40 (1979), 688–706 | DOI | MR
[38] Sutherland B., “Exact solution of a two-dimensional model for hydrogen-bonded crystals”, Phys. Rev. Lett., 19 (1967), 103–104 | DOI
[39] Sutherland B., Yang C. N., Yang C. P., “Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external electric field”, Phys. Rev. Lett., 19 (1967), 588–591 | DOI
[40] Takhtadzhan L. A., Faddeev L. D., “The quantum method for the inverse problem and the Heisenberg $XYZ$ model”, Russian Math. Surveys, 34:5 (1979), 11–68 | DOI | MR
[41] Yang C. P., “Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external electric field”, Phys. Rev. Lett., 19 (1967), 586–588 | DOI