Some Algebraic Aspects of the Inhomogeneous Six-Vertex Model
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inhomogeneous six-vertex model is a $2D$ multiparametric integrable statistical system. In the scaling limit it is expected to cover different classes of critical behaviour which, for the most part, have remained unexplored. For general values of the parameters and twisted boundary conditions the model possesses $\mathrm{U}(1)$ invariance. In this paper we discuss the restrictions imposed on the parameters for which additional global symmetries arise that are consistent with the integrable structure. These include the lattice counterparts of ${\mathcal C}$, ${\mathcal P}$ and ${\mathcal T}$ as well as translational invariance. The special properties of the lattice system that possesses an additional ${\mathcal Z}_r$ invariance are considered. We also describe the Hermitian structures, which are consistent with the integrable one. The analysis lays the groundwork for studying the scaling limit of the inhomogeneous six-vertex model.
Keywords: solvable lattice models, Bethe ansatz, Yang–Baxter equation, discrete symmetries, Hermitian structures.
@article{SIGMA_2021_17_a24,
     author = {Vladimir V. Bazhanov and Gleb A. Kotousov and Sergii M. Koval and Sergei L. Lukyanov},
     title = {Some {Algebraic} {Aspects} of the {Inhomogeneous} {Six-Vertex} {Model}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a24/}
}
TY  - JOUR
AU  - Vladimir V. Bazhanov
AU  - Gleb A. Kotousov
AU  - Sergii M. Koval
AU  - Sergei L. Lukyanov
TI  - Some Algebraic Aspects of the Inhomogeneous Six-Vertex Model
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a24/
LA  - en
ID  - SIGMA_2021_17_a24
ER  - 
%0 Journal Article
%A Vladimir V. Bazhanov
%A Gleb A. Kotousov
%A Sergii M. Koval
%A Sergei L. Lukyanov
%T Some Algebraic Aspects of the Inhomogeneous Six-Vertex Model
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a24/
%G en
%F SIGMA_2021_17_a24
Vladimir V. Bazhanov; Gleb A. Kotousov; Sergii M. Koval; Sergei L. Lukyanov. Some Algebraic Aspects of the Inhomogeneous Six-Vertex Model. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a24/

[1] Alcaraz F. C., Barber M. N., Batchelor M. T., “Conformal invariance, the $XXZ$ chain and the operator content of two-dimensional critical systems”, Ann. Physics, 182 (1988), 280–343 | DOI | MR | Zbl

[2] Baxter R. J., Private communication, 2020

[3] Baxter R. J., “Generalized ferroelectric model on a square lattice”, Stud. Appl. Math., 50 (1971), 51–69 | DOI | MR

[4] Baxter R. J., “Partition function of the eight-vertex lattice model”, Ann. Physics, 70 (1972), 193–228 | DOI | MR | Zbl

[5] Baxter R. J., “Eight-vertex model in lattice statistics and one-dimensional anisotropic heisenberg chain. I. Some fundamental eigenvectors”, Ann. Physics, 76 (1973), 1–24 | DOI | MR | Zbl

[6] Baxter R. J., “Solvable eight-vertex model on an arbitrary planar lattice”, Philos. Trans. Roy. Soc. London Ser. A, 289 (1978), 315–346 | DOI | MR

[7] Bazhanov V., Bobenko A., Reshetikhin N., “Quantum discrete sine-Gordon model at roots of $1$: integrable quantum system on the integrable classical background”, Comm. Math. Phys., 175 (1996), 377–400 | DOI | MR | Zbl

[8] Bazhanov V. V., Kotousov G. A., Koval S. M., Lukyanov S. L., “On the scaling behaviour of the alternating spin chain”, J. High Energy Phys., 2019:8 (2019), 087, 30 pp., arXiv: 1903.05033 | DOI | MR

[9] Bazhanov V. V., Kotousov G. A., Koval S. M., Lukyanov S. L., “Scaling limit of the ${\mathcal Z}_2$ invariant inhomogeneous six-vertex model”, Nuclear Phys. B, 965 (2021), 115337, 156 pp., arXiv: 2010.10613 | DOI | MR

[10] Bazhanov V. V., Lukyanov S. L., Zamolodchikov A. B., “Integrable structure of conformal field theory. II ${\rm Q}$-operator and DDV equation”, Comm. Math. Phys., 190 (1997), 247–278, arXiv: hep-th/9604044 | DOI | MR | Zbl

[11] Bazhanov V. V., Lukyanov S. L., Zamolodchikov A. B., “Integrable structure of conformal field theory. III The Yang–Baxter relation”, Comm. Math. Phys., 200 (1999), 297–324, arXiv: hep-th/9805008 | DOI | MR | Zbl

[12] Bazhanov V. V., Mangazeev V. V., Sergeev S. M., “Faddeev–Volkov solution of the Yang–Baxter equation and discrete conformal symmetry”, Nuclear Phys. B, 784 (2007), 234–258, arXiv: hep-th/0703041 | DOI | MR | Zbl

[13] Bethe H., “Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette”, Z. Phys., 71 (1931), 205–226 | DOI

[14] Bobenko A., Kutz N., Pinkall U., “The discrete quantum pendulum”, Phys. Lett. A, 177 (1993), 399–404 | DOI | MR

[15] Bobenko A. I., Springborn B. A., “Variational principles for circle patterns and Koebe's theorem”, Trans. Amer. Math. Soc., 356 (2004), 659–689, arXiv: math.GT/0203250 | DOI | MR | Zbl

[16] Candu C., Ikhlef Y., “Nonlinear integral equations for the ${\rm SL}(2,{\mathbb R})/{\rm U}(1)$ black hole sigma model”, J. Phys. A: Math. Theor., 46 (2013), 415401, 31 pp., arXiv: 1306.2646 | DOI | MR | Zbl

[17] Destri C., de Vega H. J., “Light-cone lattice approach to fermionic theories in $2${D} The massive Thirring model”, Nuclear Phys. B, 290 (1987), 363–391 | DOI | MR

[18] Faddeev L., Volkov A.Yu., “Hirota equation as an example of an integrable symplectic map”, Lett. Math. Phys., 32 (1994), 125–135, arXiv: hep-th/9405087 | DOI | MR | Zbl

[19] Faddeev L. D., Reshetikhin N.Yu., “Integrability of the principal chiral field model in $1+1$ dimension”, Ann. Physics, 167 (1986), 227–256 | DOI | MR

[20] Frahm H., Martins M. J., “Phase diagram of an integrable alternating ${\rm U}_q[\mathfrak{sl}(2|1)]$ superspin chain”, Nuclear Phys. B, 862 (2012), 504–552, arXiv: 1202.4676 | DOI | MR | Zbl

[21] Frahm H., Seel A., “The staggered six-vertex model: conformal invariance and corrections to scaling”, Nuclear Phys. B, 879 (2014), 382–406, arXiv: 1311.6911 | DOI | MR | Zbl

[22] Gaudin M., McCoy B. M., Wu T.T., “Normalization sum for the Bethe's hypothesis wave functions of the Heisenberg–Ising chain”, Phys. Rev. D, 23 (1981), 417–419 | DOI | MR

[23] Ikhlef Y., Jacobsen J., Saleur H., “A staggered six-vertex model with non-compact continuum limit”, Nuclear Phys. B, 789 (2008), 483–524, arXiv: cond-mat/0612037 | DOI | MR | Zbl

[24] Ikhlef Y., Jacobsen J., Saleur H., “The $\mathbb Z_2$ staggered vertex model and its applications”, J. Phys. A: Math. Theor., 43 (2010), 225201, 37 pp., arXiv: 0911.3003 | DOI | MR | Zbl

[25] Ikhlef Y., Jacobsen J., Saleur H., “An integrable spin chain for the ${\rm SL}(2,{\mathbb R})/{\rm U}(1)$ black hole sigma model”, Phys. Rev. Lett., 108 (2012), 081601, 6 pp., arXiv: 1109.1119 | DOI

[26] Jacobsen J. L., Saleur H., “The antiferromagnetic transition for the square-lattice Potts model”, Nuclear Phys. B, 743 (2006), 207–248, arXiv: cond-mat/0512058 | DOI | MR | Zbl

[27] Japaridze G. I., Nersesyan A. A., Wiegmann P. B., “Regularized integrable version of the one-dimensional quantum sine-Gordon model”, Phys. Scripta, 27 (1983), 5–7 | DOI | MR | Zbl

[28] Kadanoff L. P., Brown C. A., “Correlation functions on the critical lines of the Baxter and Ashkin–Teller models”, Ann. Physics, 121 (1979), 318–342 | DOI

[29] Khoroshkin S. M., Tolstoy V. N., “Universal $R$-matrix for quantized (super)algebras”, Comm. Math. Phys., 141 (1991), 599–617 | DOI | MR | Zbl

[30] Korepin V. E., “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl

[31] Lieb E. H., “Residual entropy of square ice”, Phys. Rev., 162 (1967), 162–172 | DOI

[32] Lieb E. H., Wu F.Y., “Two-dimensional ferroelectric models”, Phase Transitions and Critical Phenomena, eds. C. Domb, M.S. Green, Academic Press, London, 1972, 331–490 | MR

[33] Luther A., Peschel I., “Calculation of critical exponents in two-dimensions from quantum field theory in one-dimension”, Phys. Rev. B, 12 (1975), 3908–3917 | DOI

[34] Pauling L., “The structure and entropy of ice and of other crystals with some randomness of atomic arrangement”, J. Amer. Chem. Soc., 57 (1935), 2680–2684 | DOI

[35] Polyakov A., Wiegmann P. B., “Theory of nonabelian Goldstone bosons in two dimensions”, Phys. Lett. B, 131 (1983), 121–126 | DOI | MR

[36] Reshetikhin N.Yu., “Lectures on the integrability of the six-vertex model”, Exact Methods in Low-Dimensional Statistical Physics and Quantum Computing, Oxford University Press, Oxford, 2010, 197–266, arXiv: 1010.5031 | MR | Zbl

[37] Sklyanin E. K., Takhtadzhyan L. A., Faddeev L. D., “Quantum inverse problem method. I”, Theoret. and Math. Phys., 40 (1979), 688–706 | DOI | MR

[38] Sutherland B., “Exact solution of a two-dimensional model for hydrogen-bonded crystals”, Phys. Rev. Lett., 19 (1967), 103–104 | DOI

[39] Sutherland B., Yang C. N., Yang C. P., “Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external electric field”, Phys. Rev. Lett., 19 (1967), 588–591 | DOI

[40] Takhtadzhan L. A., Faddeev L. D., “The quantum method for the inverse problem and the Heisenberg $XYZ$ model”, Russian Math. Surveys, 34:5 (1979), 11–68 | DOI | MR

[41] Yang C. P., “Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external electric field”, Phys. Rev. Lett., 19 (1967), 586–588 | DOI