Mots-clés : soliton solution
@article{SIGMA_2021_17_a23,
author = {Yuji Kodama and Yuancheng Xie},
title = {Space {Curves} and {Solitons} of the {KP} {Hierarchy.} {I.~The} $l$-th {Generalized} {KdV} {Hierarchy}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a23/}
}
TY - JOUR AU - Yuji Kodama AU - Yuancheng Xie TI - Space Curves and Solitons of the KP Hierarchy. I. The $l$-th Generalized KdV Hierarchy JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a23/ LA - en ID - SIGMA_2021_17_a23 ER -
%0 Journal Article %A Yuji Kodama %A Yuancheng Xie %T Space Curves and Solitons of the KP Hierarchy. I. The $l$-th Generalized KdV Hierarchy %J Symmetry, integrability and geometry: methods and applications %D 2021 %V 17 %U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a23/ %G en %F SIGMA_2021_17_a23
Yuji Kodama; Yuancheng Xie. Space Curves and Solitons of the KP Hierarchy. I. The $l$-th Generalized KdV Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a23/
[1] Abenda S., “On a family of KP multi-line solitons associated to rational degenerations of real hyperelliptic curves and to the finite non-periodic Toda hierarchy”, J. Geom. Phys., 119 (2017), 112–138, arXiv: 1605.00995 | DOI | MR | Zbl
[2] Abenda S., Grinevich P. G., “Rational degenerations of M-curves, totally positive Grassmannians and KP2-solitons”, Comm. Math. Phys., 361 (2018), 1029–1081, arXiv: 1506.00563 | DOI | MR | Zbl
[3] Belokolos E. D., Bobenko A. I., Enolskii V. Z., Its A. R., Matveev V. B., Algebro-geometric approach to nonlinear integrable equations, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1994 | Zbl
[4] Buchstaber V. M., Enolskii V. Z., Leikin D. V., “Hyperelliptic Kleinian functions and applications”, Solitons, Geometry, and Topology: on the Crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 1–33 | DOI | MR
[5] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Rational analogues of abelian functions”, Funct. Anal. Appl., 33 (1999), 83–94 | DOI | MR | Zbl
[6] Buchweitz R.-O., Greuel G.-M., “The Milnor number and deformations of complex curve singularities”, Invent. Math., 58 (1980), 241–281 | DOI | MR | Zbl
[7] Burchnall J. L., Chaundy T. W., “Commutative ordinary differential operators”, Proc. London Math. Soc., 21 (1923), 420–440 | DOI | MR | Zbl
[8] Greuel G.-M., “On deformation of curves and a formula of Deligne”, Algebraic Geometry (La Rábida, 1981), Lecture Notes in Math., 961, Springer, Berlin, 1982, 141–168 | DOI | MR
[9] Kodama Y., KP solitons and the Grassmannians: combinatorics and geometry of two-dimensional wave patterns, SpringerBriefs in Mathematical Physics, 22, Springer, Singapore, 2017 | DOI | MR | Zbl
[10] Kodama Y., Williams L., “The Deodhar decomposition of the Grassmannian and the regularity of KP solitons”, Adv. Math., 244 (2013), 979–1032, arXiv: 1204.6446 | DOI | MR | Zbl
[11] Kodama Y., Williams L., “KP solitons and total positivity for the Grassmannian”, Invent. Math., 198 (2014), 637–699, arXiv: 1106.0023 | DOI | MR | Zbl
[12] Komeda J., Matsutani S., Previato E., “The sigma function for Weierstrass semigoups $\langle3, 7, 8\rangle$ and $\langle6, 13, 14, 15, 16\rangle$”, Internat. J. Math., 24 (2013), 1350085, 58 pp., arXiv: 1303.0451 | DOI | MR | Zbl
[13] Komeda J., Matsutani S., Previato E., “The Riemann constant for a non-symmetric Weierstrass semigroup”, Arch. Math. (Basel), 107 (2016), 499–509, arXiv: 1604.02627 | DOI | MR | Zbl
[14] Komeda J., Matsutani S., Previato E., “The sigma function for trigonal cyclic curves”, Lett. Math. Phys., 109 (2019), arXiv: 1712.00694 | DOI | MR | Zbl
[15] Krichever I. M., “Integration of nonlinear equations by the methods of algebraic geometry”, Funct. Anal. Appl., 11 (1977), 12–26 | DOI | MR | Zbl
[16] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR
[17] Matsutani S., Komeda J., “Sigma functions for a space curve of type $(3,4,5)$”, J. Geom. Symmetry Phys., 30 (2013), 75–91, arXiv: 1112.4137 | DOI | MR | Zbl
[18] Mulase M., “Cohomological structure in soliton equations and Jacobian varieties”, J. Differential Geom., 19 (1984), 403–430 | DOI | MR | Zbl
[19] Mulase M., “Geometric classification of commutative algebras of ordinary differential operators”, Differential Geometric Methods in Theoretical Physics (Davis, CA, 1988), NATO Adv. Sci. Inst. Ser. B Phys., 245, eds. L. L. Chau, W. Nahm, Plenum, New York, 1990, 13–27 | MR | Zbl
[20] Mumford D., Tata lectures on theta, v. II, Progress in Mathematics, 43, Jacobian theta functions and differential equations, Birkhäuser Boston, Inc., Boston, MA, 1984 | DOI | MR | Zbl
[21] Nakayashiki A., “On algebraic expressions of sigma functions for $(n,s)$ curves”, Asian J. Math., 14 (2010), 175–211, arXiv: 0803.2083 | DOI | MR
[22] Nakayashiki A., “Degeneration of trigonal curves and solutions of the KP-hierarchy”, Nonlinearity, 31 (2018), 3567–3590, arXiv: 1708.03440 | DOI | MR | Zbl
[23] Nakayashiki A., “On reducible degeneration of hyperelliptic curves and soliton solutions”, SIGMA, 15 (2019), 009, 18 pp., arXiv: 1808.06748 | DOI | MR | Zbl
[24] Pinkham H. C., Deformations of algebraic varieties with $G_{m}$ action, Astérisque, 20, 1974, i+131 pp. | MR
[25] Rosales J. C., García-Sánchez P. A., Numerical semigroups, Developments in Mathematics, 20, Springer, New York, 2009 | DOI | MR | Zbl
[26] Sato M., “Soliton equations as dynamical systems on an infinite dimensional Grassmann manifolds”, Random Systems and Dynamical Systems (Kyoto, 1981), RIMS Kokyuroku, 439, Kyoto, 1981, 30–46 | Zbl
[27] Sato M., Noumi M., “Soliton equation and universal Grassmann manifold”, Sophia University Kokyuroku in Mathematics, 18 (1984), 1–131
[28] Schur I., “Über vertauschbare lineare Differentialausdrücke”, Stizungsber. der Berliner Math. Gesel, 4 (1905), 2–8 | Zbl
[29] Segal G., Wilson G., “Loop groups and equations of KdV type”, Inst. Hautes Études Sci. Publ. Math., 61, 1985, 5–65 | DOI | MR | Zbl
[30] Takasaki K., “Geometry of universal Grassmann manifold from algebraic point of view”, Rev. Math. Phys., 1 (1989), 1–46 | DOI | MR | Zbl
[31] Xie Y., Algebraic curves and flag varieties in solutions of the KP hierarchy and the full Kostant–Toda hierarchy, PhD Thesis, in preparation, Ohio State University, 2021