@article{SIGMA_2021_17_a22,
author = {Thomas A. Ivey and Spiro Karigiannis},
title = {A {Classification} of {Twisted} {Austere} $3${-Folds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a22/}
}
Thomas A. Ivey; Spiro Karigiannis. A Classification of Twisted Austere $3$-Folds. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a22/
[1] Borisenko A., “Ruled special Lagrangian surfaces”, Minimal Surfaces, Adv. Soviet Math., 15, Amer. Math. Soc., Providence, RI, 1993, 269–285 | MR | Zbl
[2] Bryant R. L., “Some remarks on the geometry of austere manifolds”, Bol. Soc. Brasil. Mat. (N.S.), 21 (1991), 133–157 | DOI | MR | Zbl
[3] Bryant R. L., Chern S. S., Gardner R. B., Goldschmidt H. L., Griffiths P. A., “Exterior differential systems”, Mathematical Sciences Research Institute Publications, 18, Springer-Verlag, New York, 1991 | DOI | MR | Zbl
[4] Chen B.-Y., “Riemannian submanifolds”, Handbook of Differential Geometry, v. I, North-Holland, Amsterdam, 2000, 187–418 | DOI | MR | Zbl
[5] Harvey R., Lawson Jr. H.B., “Calibrated geometries”, Acta Math., 148 (1982), 47–157 | DOI | MR | Zbl
[6] Ionel M., Ivey T., “Austere submanifolds of dimension four: examples and maximal types”, Illinois J. Math., 54 (2010), 713–746, arXiv: 0906.4477 | DOI | MR | Zbl
[7] Ionel M., Ivey T., “Ruled austere submanifolds of dimension four”, Differential Geom. Appl., 30 (2012), 588–603, arXiv: 1011.4961 | DOI | MR | Zbl
[8] Ionel M., Karigiannis S., Min-Oo M., “Bundle constructions of calibrated submanifolds in ${\mathbb R}^7$ and ${\mathbb R}^8$”, Math. Res. Lett., 12 (2005), 493–512, arXiv: math.DG/0408005 | DOI | MR | Zbl
[9] Joyce D., “Ruled special Lagrangian 3-folds in $\mathbb C^3$”, Proc. London Math. Soc., 85 (2002), 233–256, arXiv: math.DG/0012060 | DOI | MR | Zbl
[10] Joyce D., Riemannian holonomy groups and calibrated geometry, Oxford Graduate Texts in Mathematics, 12, Oxford University Press, Oxford, 2007 | MR | Zbl
[11] Karigiannis S., Leung N. C.-H., “Deformations of calibrated subbundles of Euclidean spaces via twisting by special sections”, Ann. Global Anal. Geom., 42 (2012), 371–389, arXiv: 1108.6090 | DOI | MR | Zbl
[12] Strominger A., Yau S.-T., Zaslow E., “Mirror symmetry is $T$-duality”, Nuclear Phys. B, 479 (1996), 243–259, arXiv: hep-th/9606040 | DOI | MR | Zbl