A Classification of Twisted Austere $3$-Folds
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A twisted-austere $k$-fold $(M, \mu)$ in ${\mathbb R}^n$ consists of a $k$-dimensional submanifold $M$ of ${\mathbb R}^n$ together with a closed $1$-form $\mu$ on $M$, such that the second fundamental form $A$ of $M$ and the $1$-form $\mu$ satisfy a particular system of coupled nonlinear second order PDE. Given such an object, the “twisted conormal bundle” $N^* M + \mathrm{d} \mu$ is a special Lagrangian submanifold of ${\mathbb C}^n$. We review the twisted-austere condition and give an explicit example. Then we focus on twisted-austere $3$-folds. We give a geometric description of all solutions when the “base” $M$ is a cylinder, and when $M$ is austere. Finally, we prove that, other than the case of a generalized helicoid in ${\mathbb R}^5$ discovered by Bryant, there are no other possibilities for the base $M$. This gives a complete classification of twisted-austere $3$-folds in ${\mathbb R}^n$.
Keywords: calibrated geometry, special Lagrangian submanifolds, austere submanifolds, exterior differential systems.
@article{SIGMA_2021_17_a22,
     author = {Thomas A. Ivey and Spiro Karigiannis},
     title = {A {Classification} of {Twisted} {Austere} $3${-Folds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a22/}
}
TY  - JOUR
AU  - Thomas A. Ivey
AU  - Spiro Karigiannis
TI  - A Classification of Twisted Austere $3$-Folds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a22/
LA  - en
ID  - SIGMA_2021_17_a22
ER  - 
%0 Journal Article
%A Thomas A. Ivey
%A Spiro Karigiannis
%T A Classification of Twisted Austere $3$-Folds
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a22/
%G en
%F SIGMA_2021_17_a22
Thomas A. Ivey; Spiro Karigiannis. A Classification of Twisted Austere $3$-Folds. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a22/

[1] Borisenko A., “Ruled special Lagrangian surfaces”, Minimal Surfaces, Adv. Soviet Math., 15, Amer. Math. Soc., Providence, RI, 1993, 269–285 | MR | Zbl

[2] Bryant R. L., “Some remarks on the geometry of austere manifolds”, Bol. Soc. Brasil. Mat. (N.S.), 21 (1991), 133–157 | DOI | MR | Zbl

[3] Bryant R. L., Chern S. S., Gardner R. B., Goldschmidt H. L., Griffiths P. A., “Exterior differential systems”, Mathematical Sciences Research Institute Publications, 18, Springer-Verlag, New York, 1991 | DOI | MR | Zbl

[4] Chen B.-Y., “Riemannian submanifolds”, Handbook of Differential Geometry, v. I, North-Holland, Amsterdam, 2000, 187–418 | DOI | MR | Zbl

[5] Harvey R., Lawson Jr. H.B., “Calibrated geometries”, Acta Math., 148 (1982), 47–157 | DOI | MR | Zbl

[6] Ionel M., Ivey T., “Austere submanifolds of dimension four: examples and maximal types”, Illinois J. Math., 54 (2010), 713–746, arXiv: 0906.4477 | DOI | MR | Zbl

[7] Ionel M., Ivey T., “Ruled austere submanifolds of dimension four”, Differential Geom. Appl., 30 (2012), 588–603, arXiv: 1011.4961 | DOI | MR | Zbl

[8] Ionel M., Karigiannis S., Min-Oo M., “Bundle constructions of calibrated submanifolds in ${\mathbb R}^7$ and ${\mathbb R}^8$”, Math. Res. Lett., 12 (2005), 493–512, arXiv: math.DG/0408005 | DOI | MR | Zbl

[9] Joyce D., “Ruled special Lagrangian 3-folds in $\mathbb C^3$”, Proc. London Math. Soc., 85 (2002), 233–256, arXiv: math.DG/0012060 | DOI | MR | Zbl

[10] Joyce D., Riemannian holonomy groups and calibrated geometry, Oxford Graduate Texts in Mathematics, 12, Oxford University Press, Oxford, 2007 | MR | Zbl

[11] Karigiannis S., Leung N. C.-H., “Deformations of calibrated subbundles of Euclidean spaces via twisting by special sections”, Ann. Global Anal. Geom., 42 (2012), 371–389, arXiv: 1108.6090 | DOI | MR | Zbl

[12] Strominger A., Yau S.-T., Zaslow E., “Mirror symmetry is $T$-duality”, Nuclear Phys. B, 479 (1996), 243–259, arXiv: hep-th/9606040 | DOI | MR | Zbl