A Spectral Triple for a Solenoid Based on the Sierpinski Gasket
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Sierpinski gasket admits a locally isometric ramified self-covering. A semifinite spectral triple is constructed on the resulting solenoidal space, and its main geometrical features are discussed.
Keywords: self-similar fractals, noncommutative geometry, ramified coverings.
@article{SIGMA_2021_17_a19,
     author = {Valeriano Aiello and Daniele Guido and Tommaso Isola},
     title = {A {Spectral} {Triple} for a {Solenoid} {Based} on the {Sierpinski} {Gasket}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a19/}
}
TY  - JOUR
AU  - Valeriano Aiello
AU  - Daniele Guido
AU  - Tommaso Isola
TI  - A Spectral Triple for a Solenoid Based on the Sierpinski Gasket
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a19/
LA  - en
ID  - SIGMA_2021_17_a19
ER  - 
%0 Journal Article
%A Valeriano Aiello
%A Daniele Guido
%A Tommaso Isola
%T A Spectral Triple for a Solenoid Based on the Sierpinski Gasket
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a19/
%G en
%F SIGMA_2021_17_a19
Valeriano Aiello; Daniele Guido; Tommaso Isola. A Spectral Triple for a Solenoid Based on the Sierpinski Gasket. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a19/

[1] Aiello V., Guido D., Isola T., “Spectral triples for noncommutative solenoidal spaces from self-coverings”, J. Math. Anal. Appl., 448 (2017), 1378–1412, arXiv: 1604.08619 | DOI | MR | Zbl

[2] Aiello V., Guido D., Isola T., Spectral triples on irreversible $C^*$-dynamical systems, arXiv: 2102.05392

[3] Arauza Rivera A., “Spectral triples for the variants of the Sierpiński gasket”, J. Fractal Geom., 6 (2019), 205–246, arXiv: 1709.00755 | DOI | MR | Zbl

[4] Atiyah M. F., “Elliptic operators, discrete groups and von Neumann algebras”, Astérisque, 32–33, 1976, 43–72 | MR | Zbl

[5] Barlow M. T., Perkins E. A., “Brownian motion on the Sierpiński gasket”, Probab. Theory Related Fields, 79 (1988), 543–623 | DOI | MR | Zbl

[6] Bellissard J. V., Marcolli M., Reihani K., Dynamical systems on spectral metric spaces, arXiv: 1008.4617

[7] Berestovskii V., Plaut C., “Uniform universal covers of uniform spaces”, Topology Appl., 154 (2007), 1748–1777, arXiv: math.AG/0607353 | DOI | MR | Zbl

[8] Carey A., Phillips J., “Unbounded Fredholm modules and spectral flow”, Canad. J. Math., 50 (1998), 673–718 | DOI | MR | Zbl

[9] Carey A., Phillips J., Sukochev F., “Spectral flow and Dixmier traces”, Adv. Math., 173 (2003), 68–113, arXiv: math.OA/0205076 | DOI | MR | Zbl

[10] Christensen E., Ivan C., “Sums of two-dimensional spectral triples”, Math. Scand., 100 (2007), 35–60, arXiv: math.OA/0601024 | DOI | MR | Zbl

[11] Christensen E., Ivan C., Lapidus M. L., “Dirac operators and spectral triples for some fractal sets built on curves”, Adv. Math., 217 (2008), 42–78, arXiv: math.MG/0610222 | DOI | MR | Zbl

[12] Christensen E., Ivan C., Schrohe E., “Spectral triples and the geometry of fractals”, J. Noncommut. Geom., 6 (2012), 249–274, arXiv: 1002.3081 | DOI | MR | Zbl

[13] Cipriani F., Guido D., Isola T., “A $C^*$-algebra of geometric operators on self-similar CW-complexes. Novikov–Shubin and $L^2$-Betti numbers”, J. Funct. Anal., 256 (2009), 603–634, arXiv: math.OA/0607603 | DOI | MR | Zbl

[14] Cipriani F., Guido D., Isola T., Sauvageot J.-L., “Integrals and potentials of differential 1-forms on the Sierpinski gasket”, Adv. Math., 239 (2013), 128–163, arXiv: 1105.1995 | DOI | MR | Zbl

[15] Cipriani F., Guido D., Isola T., Sauvageot J.-L., “Spectral triples for the Sierpinski gasket”, J. Funct. Anal., 266 (2014), 4809–4869, arXiv: 1112.6401 | DOI | MR | Zbl

[16] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl

[17] Cuntz J., “The internal structure of simple $C^{\ast} $-algebras”, Operator Algebras and Applications (Kingston, Ont., 1980), v. I, Proc. Sympos. Pure Math., 38, Amer. Math. Soc., Providence, R.I., 1982, 85–115 | DOI | MR

[18] Deeley R. J., Goffeng M., Mesland B., Whittaker M. F., “Wieler solenoids, Cuntz–Pimsner algebras and $K$-theory”, Ergodic Theory Dynam. Systems, 38 (2018), 2942–2988, arXiv: 1606.05449 | DOI | MR | Zbl

[19] Dixmier J., “Existence de traces non normales”, C. R. Acad. Sci. Paris Sér. A-B, 262 (1966), A1107–A1108 | MR

[20] Doplicher S., Fredenhagen K., Roberts J. E., “The quantum structure of spacetime at the Planck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | Zbl

[21] Fack T., “Sur la notion de valeur caractéristique”, J. Operator Theory, 7 (1982), 307–333 | MR | Zbl

[22] Fack T., Kosaki H., “Generalized $s$-numbers of $\tau$-measurable operators”, Pacific J. Math., 123 (1986), 269–300 | DOI | MR | Zbl

[23] Gracia-Bondía J.M., Várilly J. C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Boston, Inc., Boston, MA, 2001 | DOI | MR | Zbl

[24] Guido D., Isola T., “Singular traces on semifinite von Neumann algebras”, J. Funct. Anal., 134 (1995), 451–485 | DOI | MR | Zbl

[25] Guido D., Isola T., “Noncommutative Riemann integration and Novikov–Shubin invariants for open manifolds”, J. Funct. Anal., 176 (2000), 115–152, arXiv: math.OA/9802015 | DOI | MR | Zbl

[26] Guido D., Isola T., “A semicontinuous trace for almost local operators on an open manifold”, Internat. J. Math., 12 (2001), 1087–1102, arXiv: math.DG/0110294 | DOI | MR | Zbl

[27] Guido D., Isola T., “Dimensions and singular traces for spectral triples, with applications to fractals”, J. Funct. Anal., 203 (2003), 362–400, arXiv: math.OA/0202108 | DOI | MR | Zbl

[28] Guido D., Isola T., “Dimensions and spectral triples for fractals in ${\mathbb R}^N$”, Advances in Operator Algebras and Mathematical Physics, Theta Ser. Adv. Math., 5, Theta, Bucharest, 2005, 89–108, arXiv: math.OA/0404295 | MR | Zbl

[29] Guido D., Isola T., “Spectral triples for nested fractals”, J. Noncommut. Geom., 11 (2017), 1413–1436, arXiv: 1601.08208 | DOI | MR | Zbl

[30] Hawkins A., Skalski A., White S., Zacharias J., “On spectral triples on crossed products arising from equicontinuous actions”, Math. Scand., 113 (2013), 262–291, arXiv: 1103.6199 | DOI | MR | Zbl

[31] Higson N., Roe J., Analytic $K$-homology, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000 | MR | Zbl

[32] Kigami J., Analysis on fractals, Cambridge Tracts in Mathematics, 143, Cambridge University Press, Cambridge, 2001 | DOI | MR | Zbl

[33] Kigami J., Lapidus M. L., “Self-similarity of volume measures for Laplacians on p.c.f. self-similar fractals”, Comm. Math. Phys., 217 (2001), 165–180 | DOI | MR | Zbl

[34] Lapidus M., Sarhad J., “Dirac operators and geodesic metric on the harmonic Sierpinski gasket and other fractal sets”, J. Noncommut. Geom., 8 (2014), 947–985, arXiv: 1212.0878 | DOI | MR | Zbl

[35] Lapidus M. L., “Analysis on fractals, Laplacians on self-similar sets, noncommutative geometry and spectral dimensions”, Topol. Methods Nonlinear Anal., 4 (1994), 137–195 | DOI | MR | Zbl

[36] Lapidus M. L., “Towards a noncommutative fractal geometry? Laplacians and volume measures on fractals”, Harmonic Analysis and Nonlinear Differential Equations (Riverside, CA, 1995), Contemp. Math., 208, Amer. Math. Soc., Providence, RI, 1997, 211–252 | DOI | MR | Zbl

[37] Latrémolière F., Packer J., “Noncommutative solenoids and the Gromov–Hausdorff propinquity”, Proc. Amer. Math. Soc., 145 (2017), 2043–2057, arXiv: 1601.02707 | DOI | MR | Zbl

[38] McCord M. C., “Inverse limit sequences with covering maps”, Trans. Amer. Math. Soc., 114 (1965), 197–209 | DOI | MR | Zbl

[39] Nekrashevych V., Self-similar groups, Mathematical Surveys and Monographs, 117, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl

[40] Paterson A. L.T., “Contractive spectral triples for crossed products”, Math. Scand., 114 (2014), 275–298, arXiv: 1204.4404 | DOI | MR | Zbl

[41] Rieffel M. A., “Metrics on states from actions of compact groups”, Doc. Math., 3 (1998), 215–229, arXiv: math.OA/9807084 | MR

[42] Roe J., “An index theorem on open manifolds. I”, J. Differential Geom., 27 (1988), 87–113 | DOI | MR | Zbl

[43] Roe J., “An index theorem on open manifolds. II”, J. Differential Geom., 27 (1988), 115–136 | DOI | MR | Zbl

[44] Roe J., Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics, 90, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR | Zbl

[45] Roe J., Lectures on coarse geometry, University Lecture Series, 31, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl

[46] Ruan H.-J., Strichartz R. S., “Covering maps and periodic functions on higher dimensional Sierpinski gaskets”, Canad. J. Math., 61 (2009), 1151–1181 | DOI | MR | Zbl

[47] Sierpiński R. S., “Sur une courbe dont tout point est un point de ramification”, C. R. Acad. Sci. Paris, 160 (1915), 302–305 | Zbl

[48] Strichartz R. S., “Fractals in the large”, Canad. J. Math., 50 (1998), 638–657 | DOI | MR | Zbl

[49] Strichartz R. S., “Fractafolds based on the Sierpiński gasket and their spectra”, Trans. Amer. Math. Soc., 355 (2003), 4019–4043 | DOI | MR | Zbl

[50] Strichartz R. S., “Periodic and almost periodic functions on infinite Sierpinski gaskets”, Canad. J. Math., 61 (2009), 1182–1200 | DOI | MR | Zbl

[51] Teplyaev A., “Spectral analysis on infinite Sierpiński gaskets”, J. Funct. Anal., 159 (1998), 537–567 | DOI | MR | Zbl

[52] Willett R., Yu G., Higher index theory, Cambridge Studies in Advanced Mathematics, 189, Cambridge University Press, Cambridge, 2020 | DOI | MR | Zbl