Mots-clés : torsion module
@article{SIGMA_2021_17_a18,
author = {Shinichi Tajima and Katsusuke Nabeshima},
title = {Computing {Regular} {Meromorphic} {Differential} {Forms} via {Saito's} {Logarithmic} {Residues}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a18/}
}
TY - JOUR AU - Shinichi Tajima AU - Katsusuke Nabeshima TI - Computing Regular Meromorphic Differential Forms via Saito's Logarithmic Residues JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a18/ LA - en ID - SIGMA_2021_17_a18 ER -
%0 Journal Article %A Shinichi Tajima %A Katsusuke Nabeshima %T Computing Regular Meromorphic Differential Forms via Saito's Logarithmic Residues %J Symmetry, integrability and geometry: methods and applications %D 2021 %V 17 %U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a18/ %G en %F SIGMA_2021_17_a18
Shinichi Tajima; Katsusuke Nabeshima. Computing Regular Meromorphic Differential Forms via Saito's Logarithmic Residues. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a18/
[1] Aleksandrov A. G., “A de Rahm complex of nonisolated singularities”, Funct. Anal. Appl., 22 (1988), 131–133 | DOI | MR | Zbl
[2] Aleksandrov A. G., “Nonisolated hypersurface singularities”, Theory of Singularities and its Applications, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990, 211–246 | DOI | MR
[3] Aleksandrov A. G., “Logarithmic differential forms, torsion differentials and residue”, Complex Var. Theory Appl., 50 (2005), 777–802 | DOI | MR | Zbl
[4] Aleksandrov A. G., Tsikh A. K., “Théorie des résidus de Leray et formes de Barlet sur une intersection complète singulière”, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 973–978 | DOI | MR | Zbl
[5] Barlet D., “Le faisceau $\omega'_{X}$ sur un espace analytique $X$ de dimension pure”, Fonctions de plusieurs variables complexes, III, Sém. François Norguet, 1975–1977, Lecture Notes in Math., 670, Springer, Berlin, 1978, 187–204 | DOI | MR
[6] Brasselet J. P., Sebastiani M., “Brieskorn and the monodromy”, J. Singul., 18 (2018), 84–104 | DOI | MR | Zbl
[7] Brieskorn E., “Die Monodromie der isolierten Singularitäten von Hyperflächen”, Manuscripta Math., 2 (1970), 103–161 | DOI | MR | Zbl
[8] Brunella M., “Some remarks on indices of holomorphic vector fields”, Publ. Mat., 41 (1997), 527–544 | DOI | MR | Zbl
[9] Corrêa M., da Silva Machado D., “Residue formulas for logarithmic foliations and applications”, Trans. Amer. Math. Soc., 371 (2019), 6403–6420, arXiv: 1611.01203 | DOI | MR | Zbl
[10] Corrêa M., da Silva Machado D., “GSV-index for holomorphic Pfaff systems”, Doc. Math., 25 (2020), 1011–1027, arXiv: 1611.09376 | DOI | MR | Zbl
[11] Douai A., “Très bonnes bases du réseau de Brieskorn d'un polynôme modéré”, Bull. Soc. Math. France, 127 (1999), 255–287 | DOI | MR | Zbl
[12] Granger M., Schulze M., “Normal crossing properties of complex hypersurfaces via logarithmic residues”, Compos. Math., 150 (2014), 1607–1622, arXiv: 1109.2612 | DOI | MR | Zbl
[13] Greuel G. M., “Der Gauss–Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten”, Math. Ann., 214 (1975), 235–266 | DOI | MR | Zbl
[14] Guimaraes A. G., Polinômio de Bernstein–Sato de uma hipersuperficie com singularidade isolada, Ph.D. Thesis, ICMC-USP, São Carlos, 2002
[15] Kersken M., “Der Residuenkomplex in der lokalen algebraischen und analytischen Geometrie”, Math. Ann., 265 (1983), 423–455 | DOI | MR | Zbl
[16] Kersken M., “Reguläre Differentialformen”, Manuscripta Math., 46 (1984), 1–25 | DOI | MR | Zbl
[17] Lê D.T., “Calcul du nombre de cycles évanouissants d'une hypersurface complexe”, Ann. Inst. Fourier (Grenoble), 23 (1973), 261–270 | DOI | MR | Zbl
[18] Michler R., “Torsion of differentials of hypersurfaces with isolated singularities”, J. Pure Appl. Algebra, 104 (1995), 81–88 | DOI | MR | Zbl
[19] Nabeshima K., Tajima S., “Testing zero-dimensionality of varieties at a point”, Math. Comput. Sci. (to appear) , arXiv: 1903.12365 | DOI | MR
[20] Nabeshima K., Tajima S., “Computing Tjurina stratifications of $\mu$-constant deformations via parametric local cohomology systems”, Appl. Algebra Engrg. Comm. Comput., 27 (2016), 451–467 | DOI | MR | Zbl
[21] Nabeshima K., Tajima S., “Solving extended ideal membership problems in rings of convergent power series via Gröbner bases”, Mathematical Aspects of Computer and Information Sciences, Lecture Notes in Comput. Sci., 9582, Springer, Cham, 2016, 252–267 | DOI | MR | Zbl
[22] Nabeshima K., Tajima S., “Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals”, J. Symbolic Comput., 82 (2017), 91–122, arXiv: 1508.06724 | DOI | MR | Zbl
[23] Nabeshima K., Tajima S., “Computing $\mu^*$-sequences of hypersurface isolated singularities via parametric local cohomology systems”, Acta Math. Vietnam., 42 (2017), 279–288 | DOI | MR | Zbl
[24] Nabeshima K., Tajima S., “Computation methods of logarithmic vector fields associated to semi-weighted homogeneous isolated hypersurface singularities”, Tsukuba J. Math., 42 (2018), 191–231 | DOI | MR | Zbl
[25] Nabeshima K., Tajima S., “A new method for computing the limiting tangent space of an isolated hypersurface singularity via algebraic local cohomology”, Singularities in Generic Geometry, Adv. Stud. Pure Math., 78, Math. Soc. Japan, Tokyo, 2018, 331–344 | DOI | MR | Zbl
[26] Nabeshima K., Tajima S., “Alternative algorithms for computing generic $\mu^*$-sequences and local Euler obstructions of isolated hypersurface singularities”, J. Algebra Appl., 18 (2019), 1950156, 13 pp. | DOI | MR | Zbl
[27] Nabeshima K., Tajima S., “Computing logarithmic vector fields and Bruce–Roberts Milnor numbers via local cohomology classes”, Rev. Roumaine Math. Pures Appl., 64 (2019), 523–540 | MR | Zbl
[28] Nabeshima K., Tajima S., “Generalized integral dependence relations”, Mathematical Aspects of Computer and Information Sciences, Lecture Notes in Computer Science, 11989, Springer, Cham, 2020, 48–63 | DOI
[29] Pol D., “On the values of logarithmic residues along curves”, Ann. Inst. Fourier (Grenoble), 68 (2018), 725–766, arXiv: 1410.2126 | DOI | MR | Zbl
[30] Pol D., “Characterizations of freeness for equidimensional subspaces”, J. Singul., 20 (2020), 1–30, arXiv: 1512.06778 | DOI | MR | Zbl
[31] Saito K., “Quasihomogene isolierte Singularitäten von Hyperflächen”, Invent. Math., 14 (1971), 123–142 | DOI | MR | Zbl
[32] Saito K., “Calcul algébrique de la monodromie”, Astérisque, 7, 1973, 195–211 | MR
[33] Saito K., “On the uniformization of complements of discriminant loci”, Hyperfunctions and Linear Partial Differential Equations, RIMS Kôkyûroku, 287, Res. Inst. Math. Sci. (RIMS), Kyoto, 1977, 117–137
[34] Saito K., “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27 (1980), 265–291 | MR | Zbl
[35] Scherk J., “On the Gauss–Manin connection of an isolated hypersurface singularity”, Math. Ann., 238 (1978), 23–32 | DOI | MR | Zbl
[36] Scherk J., “On the pole order and Hodge filtrations of isolated hypersurface singularities”, Canad. Math. Bull., 36 (1993), 368–372 | DOI | MR | Zbl
[37] Schulze M., “Algorithms for the Gauss–Manin connection”, J. Symbolic Comput., 32 (2001), 549–564 | DOI | MR | Zbl
[38] Skoda H., Briançon J., “Sur la clôture intégrale d'un idéal de germes de fonctions holomorphes en un point de $C^{n}$”, C. R. Acad. Sci. Paris Sér. A, 278 (1974), 949–951 | MR | Zbl
[39] Tajima S., “On polar varieties, logarithmic vector fields and holonomic D-modules”, Recent Development of Micro-Local Analysis for the Theory of Asymptotic Analysis, RIMS Kôkyûroku Bessatsu, 40, Res. Inst. Math. Sci. (RIMS), Kyoto, 2013, 41–51 | MR
[40] Tajima S., Nabeshima K., “An algorithm for computing torsion differential forms associated to an isolated hypersurface singularity”, Math. Comput. Sci. (to appear) | DOI | MR
[41] Tajima S., Nakamura Y., Nabeshima K., “Standard bases and algebraic local cohomology for zero dimensional ideals”, Singularities – Niigata–Toyama 2007, Adv. Stud. Pure Math., 56, Math. Soc. Japan, Tokyo, 2009, 341–361 | DOI | MR | Zbl
[42] Tajima S., Shibuta T., Nabeshima K., “Computing logarithmic vector fields along an ICIS germ via Matlis duality”, Computer Algebra in Scientific Computing, Lecture Notes in Computer Science, 12291, Springer, Cham, 2020, 543–562 | DOI | MR
[43] Teissier B., “Cycles évanescents, sections planes et conditions de Whitney”, Astérisque, 7, 1973, 285–362 | MR
[44] Teissier B., “Variétés polaires. I Invariants polaires des singularités d'hypersurfaces”, Invent. Math., 40 (1977), 267–292 | DOI | MR | Zbl
[45] van Straten D., The spectrum of hypersurface singularities, arXiv: 2002.00519
[46] Vetter U., “Äußere Potenzen von Differentialmoduln reduzierter vollständiger Durchschnitte”, Manuscripta Math., 2 (1970), 67–75 | DOI | MR | Zbl
[47] Zariski O., “Characterization of plane algebroid curves whose module of differentials has maximum torsion”, Proc. Nat. Acad. Sci. USA, 56 (1966), 781–786 | DOI | MR | Zbl