Quantum $\mathrm{K}$-Theory of Grassmannians and Non-Abelian Localization
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the example of complex grassmannians, we demonstrate various techniques available for computing genus-$0$ $\mathrm{K}$-theoretic GW-invariants of flag manifolds and more general quiver varieties. In particular, we address explicit reconstruction of all such invariants using finite-difference operators, the role of the $q$-hypergeometric series arising in the context of quasimap compactifications of spaces of rational curves in such varieties, the theory of twisted GW-invariants including level structures, as well as the Jackson-type integrals playing the role of equivariant $\mathrm{K}$-theoretic mirrors.
Keywords: Gromov–Witten invariants, $\mathrm{K}$-theory, grassmannians, non-abelian localization.
@article{SIGMA_2021_17_a17,
     author = {Alexander Givental and Xiaohan Yan},
     title = {Quantum $\mathrm{K}${-Theory} of {Grassmannians} and {Non-Abelian} {Localization}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a17/}
}
TY  - JOUR
AU  - Alexander Givental
AU  - Xiaohan Yan
TI  - Quantum $\mathrm{K}$-Theory of Grassmannians and Non-Abelian Localization
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a17/
LA  - en
ID  - SIGMA_2021_17_a17
ER  - 
%0 Journal Article
%A Alexander Givental
%A Xiaohan Yan
%T Quantum $\mathrm{K}$-Theory of Grassmannians and Non-Abelian Localization
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a17/
%G en
%F SIGMA_2021_17_a17
Alexander Givental; Xiaohan Yan. Quantum $\mathrm{K}$-Theory of Grassmannians and Non-Abelian Localization. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a17/

[1] Bertram A., Ciocan-Fontanine I., Kim B., “Two proofs of a conjecture of Hori and Vafa”, Duke Math. J., 126 (2005), 101–136, arXiv: math.AG/0304403 | DOI | MR | Zbl

[2] Bertram A., Ciocan-Fontanine I., Kim B., “Gromov–Witten invariants for abelian and nonabelian quotients”, J. Algebraic Geom., 17 (2008), 275–294, arXiv: math.AG/0407254 | DOI | MR | Zbl

[3] Brown J., “Gromov–Witten invariants of toric fibrations”, Int. Math. Res. Not., 2014 (2014), 5437–5482, arXiv: 0901.1290 | DOI | MR | Zbl

[4] Ciocan-Fontanine I., Kim B., Maulik D., “Stable quasimaps to GIT quotients”, J. Geom. Phys., 75 (2014), 17–47, arXiv: 1106.3724 | DOI | MR | Zbl

[5] Coates T., Givental A., “Quantum Riemann–Roch, Lefschetz and Serre”, Ann. of Math., 165 (2007), 15–53, arXiv: math.AG/0110142 | DOI | MR | Zbl

[6] De Sole A., Kac V. G., “On integral representations of $q$-gamma and $q$-beta functions”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 1 (2005), 11–29, arXiv: math.QA/0302032 | MR | Zbl

[7] Dong H., Wen Y., Level correspondence of $K$-theoretic $I$-functions in Grassmannian duality, arXiv: 2004.10661

[8] Givental A., “Equivariant Gromov–Witten invariants”, Int. Math. Res. Not., 1996 (1996), 613–663, arXiv: alg-geom/9603021 | DOI | MR | Zbl

[9] Givental A., “On the WDVV equation in quantum $K$-theory”, Michigan Math. J., 48 (2000), 295–304, arXiv: math.AG/0003158 | DOI | MR | Zbl

[10] Givental A., “Permutation-equivariant quantum K-theory I Definitions. Elementary K-theory of $\overline{\mathcal M}_{0,n}/S_n$”, Mosc. Math. J., 17 (2017), 691–698, arXiv: 1508.02690 | DOI | MR | Zbl

[11] Givental A., Permutation-equivariant quantum K-theory II Fixed point localization, arXiv: 1508.04374

[12] Givental A., Permutation-equivariant quantum K-theory III Lefschetz' fixed point formula on ${\overline{\mathcal M}}_{0,n}/S_n$, arXiv: 1508.06697

[13] Givental A., Permutation-equivariant quantum K-theory IV ${\mathcal D}_q$-modules, arXiv: 1509.00830 | MR

[14] Givental A., Permutation-equivariant quantum K-theory V Toric $q$-hypergeometric functions, arXiv: 1509.03903

[15] Givental A., Permutation-equivariant quantum K-theory VI Mirrors, arXiv: 1509.07852

[16] Givental A., Permutation-equivariant quantum K-theory VIII Explicit reconstruction, arXiv: 1510.06116

[17] Givental A., Permutation-equivariant quantum K-theory IX Quantum-Riemann–Roch in all genera, arXiv: 1709.03180 | MR

[18] Givental A., “Permutation-equivariant quantum K-theory X Quantum Hirzebruch–Riemann–Roch in genus 0”, SIGMA, 16 (2020), 031, 16 pp., arXiv: 1710.02376 | DOI | MR | Zbl

[19] Givental A., Permutation-equivariant quantum K-theory XI Quantum Adams–Riemann–Roch, arXiv: 1711.04201 | MR

[20] Givental A., Lee Y.-P., “Quantum $K$-theory on flag manifolds, finite-difference Toda lattices and quantum groups”, Invent. Math., 151 (2003), 193–219, arXiv: math.AG/0108105 | DOI | MR | Zbl

[21] Givental A., Tonita V., “The Hirzebruch–Riemann–Roch theorem in true genus-0 quantum K-theory”, Symplectic, Poisson, and noncommutative geometry, Math. Sci. Res. Inst. Publ., 62, Cambridge University Press, New York, 2014, 43–91, arXiv: 1106.3136 | MR | Zbl

[22] Hori K., Vafa C., Mirror symmetry, arXiv: hep-th/0002222 | MR

[23] Huq-Kuruvilla I., Multiplicative quantum cobordism theory, arXiv: 2101.09305 | Zbl

[24] Koroteev P., Pushkar P. P., Smirnov A., Zeitlin A. M., Quantum K-theory of quiver varieties and many-body systems, arXiv: 1705.10419 | MR

[25] Lee Y.-P., “Quantum $K$-theory. I Foundations”, Duke Math. J., 121 (2004), 389–424, arXiv: math.AG/0105014 | DOI | MR | Zbl

[26] Liu H., Self-duality in quantum K-theory, arXiv: 1906.10824

[27] Marsh R. J., Rietsch K., “The $B$-model connection and mirror symmetry for Grassmannians”, Adv. Math., 366 (2020), 107027, 131 pp., arXiv: 1307.1085 | DOI | MR | Zbl

[28] Maulik D., Okounkov A., Quantum groups and quantum cohomology, Astérisque, 408, 2019, ix+209 pp., arXiv: 1211.1287 | DOI | MR | Zbl

[29] Okounkov A., “Lectures on K-theoretic computations in enumerative geometry”, Geometry of Moduli Spaces and Representation Theory, IAS/Park City Math. Ser., 24, Amer. Math. Soc., Providence, RI, 2017, 251–380, arXiv: 1512.07363 | DOI | MR | Zbl

[30] Pushkar P. P., Smirnov A. V., Zeitlin A. M., “Baxter $Q$-operator from quantum $K$-theory”, Adv. Math., 360 (2020), 106919, 63 pp., arXiv: 1612.08723 | DOI | MR | Zbl

[31] Rimányi R., Tarasov V., Varchenko A., “Trigonometric weight functions as $K$-theoretic stable envelope maps for the cotangent bundle of a flag variety”, J. Geom. Phys., 94 (2015), 81–119, arXiv: 1411.0478 | DOI | MR | Zbl

[32] Ruan Y., Zhang M., The level structure in quantum K-theory and mock theta functions, arXiv: 1804.06552

[33] Taipale K., “K-theoretic J-functions of type A flag varieties”, Int. Math. Res. Not., 2013 (2013), 3647–3677, arXiv: 1110.3117 | DOI | MR | Zbl

[34] Wen Y., K-theoretic $I$-functions of $V//_{\theta}G$ and applications, arXiv: 1906.00775

[35] Witten E., “The Verlinde algebra and the cohomology of the Grassmannian”, Geometry, Topology, Physics, Conf. Proc. Lecture Notes Geom. Topology, 4, Int. Press, Cambridge, MA, 1995, 357–422, arXiv: hep-th/9312104 | MR | Zbl

[36] Yan X., Serre's duality in quantum K-theory, and level structures, in preparation