@article{SIGMA_2021_17_a16,
author = {Masayuki Aino},
title = {Convergence to the {Product} of the {Standard} {Spheres} and {Eigenvalues} of the {Laplacian}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a16/}
}
Masayuki Aino. Convergence to the Product of the Standard Spheres and Eigenvalues of the Laplacian. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a16/
[1] Aino M., Lichnerowicz–Obata estimate, almost parallel $p$-form and almost product manifolds, arXiv: 1904.06533 | MR
[2] Ambrosio L., Gigli N., Savaré G., “Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below”, Invent. Math., 195 (2014), 289–391, arXiv: 1106.2090 | DOI | MR | Zbl
[3] Ambrosio L., Gigli N., Savaré G., “Metric measure spaces with Riemannian Ricci curvature bounded from below”, Duke Math. J., 163 (2014), 1405–1490, arXiv: 1109.0222 | DOI | MR | Zbl
[4] Ambrosio L., Gigli N., Savaré G., “Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds”, Ann. Probab., 43 (2015), 339–404, arXiv: 1209.5786 | DOI | MR | Zbl
[5] Ambrosio L., Honda S., “New stability results for sequences of metric measure spaces with uniform Ricci bounds from below”, Measure Theory in Non-Smooth Spaces, Partial Differ. Equ. Meas. Theory, De Gruyter Open, Warsaw, 2017, 1–51, arXiv: 1605.07908 | DOI | MR
[6] Ambrosio L., Trevisan D., “Well-posedness of Lagrangian flows and continuity equations in metric measure spaces”, Anal. PDE, 7 (2014), 1179–1234, arXiv: 1402.4788 | DOI | MR | Zbl
[7] Ambrosio L., Trevisan D., “Lecture notes on the DiPerna–Lions theory in abstract measure spaces”, Ann. Fac. Sci. Toulouse Math., 26 (2017), 729–766, arXiv: 1505.05292 | DOI | MR | Zbl
[8] Aubry E., “Pincement sur le spectre et le volume en courbure de Ricci positive”, Ann. Sci. École Norm. Sup. (4), 38 (2005), 387–405, arXiv: math.DG/0505408 | DOI | MR | Zbl
[9] Burago D., Burago Y., Ivanov S., A course in metric geometry, Graduate Studies in Mathematics, 33, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl
[10] Cavalletti F., Milman E., The globalization theorem for the curvature dimension condition, arXiv: 1612.07623 | MR
[11] Cheeger J., “Differentiability of Lipschitz functions on metric measure spaces”, Geom. Funct. Anal., 9 (1999), 428–517 | DOI | MR | Zbl
[12] Cheeger J., Colding T. H., “On the structure of spaces with Ricci curvature bounded below. I”, J. Differential Geom., 46 (1997), 406–480 | DOI | MR | Zbl
[13] Cheeger J., Colding T. H., “On the structure of spaces with Ricci curvature bounded below. III”, J. Differential Geom., 54 (2000), 37–74 | DOI | MR | Zbl
[14] Erbar M., Kuwada K., Sturm K.-T., “On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces”, Invent. Math., 201 (2015), 993–1071, arXiv: 1303.4382 | DOI | MR | Zbl
[15] Gigli N., Nonsmooth differential geometry – an approach tailored for spaces with Ricci curvature bounded from below, Mem. Amer. Math. Soc., 251, 2018, v+161 pp., arXiv: 1407.0809 | DOI | MR
[16] Gigli N., Pasqualetto E., Lectures on nonsmooth differential geometry, SISSA Springer Series, 2, Springer, 2020 | DOI | Zbl
[17] Gigli N., Rigoni C., “Recognizing the flat torus among ${\rm RCD}^*(0,N)$ spaces via the study of the first cohomology group”, Calc. Var. Partial Differential Equations, 57 (2018), 104, 39 pp., arXiv: 1705.04466 | DOI | MR | Zbl
[18] Grosjean J.-F., “A new Lichnerowicz–Obata estimate in the presence of a parallel $p$-form”, Manuscripta Math., 107 (2002), 503–520 | DOI | MR | Zbl
[19] Hajłasz P., Koskela P., “Sobolev meets Poincaré”, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1211–1215 | MR | Zbl
[20] Hajłasz P., Koskela P., Sobolev met Poincaré, Mem. Amer. Math. Soc., 145, 2000, x+101 pp. | DOI | MR
[21] Honda S., “Ricci curvature and almost spherical multi-suspension”, Tohoku Math. J., 61 (2009), 499–522 | DOI | MR | Zbl
[22] Honda S., “Ricci curvature and $L^p$-convergence”, J. Reine Angew. Math., 705 (2015), 85–154, arXiv: 1212.2052 | MR | Zbl
[23] Jiang R., Li H., Zhang H., “Heat kernel bounds on metric measure spaces and some applications”, Potential Anal., 44 (2016), 601–627, arXiv: 1407.5289 | DOI | MR | Zbl
[24] Ketterer C., “Cones over metric measure spaces and the maximal diameter theorem”, J. Math. Pures Appl., 103 (2015), 1228–1275, arXiv: 1311.1307 | DOI | MR | Zbl
[25] Ketterer C., “Obata's rigidity theorem for metric measure spaces”, Anal. Geom. Metr. Spaces, 3 (2015), 278–295, arXiv: 1410.5210 | DOI | MR | Zbl
[26] Petersen P., “On eigenvalue pinching in positive Ricci curvature”, Invent. Math., 138 (1999), 1–21 | DOI | MR | Zbl
[27] Petersen P., Riemannian geometry, Graduate Texts in Mathematics, 171, 3rd ed., Springer, Cham, 2016 | DOI | MR | Zbl
[28] Rajala T., “Local Poincaré inequalities from stable curvature conditions on metric spaces”, Calc. Var. Partial Differential Equations, 44 (2012), 477–494, arXiv: 1107.4842 | DOI | MR | Zbl
[29] Sturm K.-T., “Analysis on local Dirichlet spaces. II Upper Gaussian estimates for the fundamental solutions of parabolic equations”, Osaka J. Math., 32 (1995), 275–312 | MR | Zbl
[30] Sturm K.-T., “Analysis on local Dirichlet spaces. III The parabolic Harnack inequality”, J. Math. Pures Appl., 75 (1996), 273–297 | MR | Zbl
[31] Sturm K.-T., “On the geometry of metric measure spaces. I”, Acta Math., 196 (2006), 65–131 | DOI | MR | Zbl
[32] Sturm K.-T., “On the geometry of metric measure spaces. II”, Acta Math., 196 (2006), 133–177 | DOI | MR | Zbl