@article{SIGMA_2021_17_a15,
author = {Mar{\'\i}a \'Angeles Garc{\'\i}a-Ferrero and David G\'omez-Ullate and Robert Milson},
title = {Exceptional {Legendre} {Polynomials} and {Confluent} {Darboux} {Transformations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a15/}
}
TY - JOUR AU - María Ángeles García-Ferrero AU - David Gómez-Ullate AU - Robert Milson TI - Exceptional Legendre Polynomials and Confluent Darboux Transformations JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a15/ LA - en ID - SIGMA_2021_17_a15 ER -
%0 Journal Article %A María Ángeles García-Ferrero %A David Gómez-Ullate %A Robert Milson %T Exceptional Legendre Polynomials and Confluent Darboux Transformations %J Symmetry, integrability and geometry: methods and applications %D 2021 %V 17 %U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a15/ %G en %F SIGMA_2021_17_a15
María Ángeles García-Ferrero; David Gómez-Ullate; Robert Milson. Exceptional Legendre Polynomials and Confluent Darboux Transformations. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a15/
[1] Abraham P. B., Moses H. E., “Changes in potentials due to changes in the point spectrum: anharmonic oscillators with exact solutions”, Phys. Rev. A, 22 (1980), 1333–1340 | DOI | MR
[2] Akritas A. G., Akritas E. K., Malaschonok G. I., “Various proofs of Sylvester's (determinant) identity”, Math. Comput. Simulation, 42 (1996), 585–593 | DOI | MR | Zbl
[3] Bonneux N., “Exceptional Jacobi polynomials”, J. Approx. Theory, 239 (2019), 72–112, arXiv: 1804.01323 | DOI | MR | Zbl
[4] Contreras-Astorga A., Schulze-Halberg A., “Recursive representation of Wronskians in confluent supersymmetric quantum mechanics”, J. Phys. A: Math. Theor., 50 (2017), 105301, 15 pp., arXiv: 1702.00843 | DOI | MR | Zbl
[5] Durán A.J., “Higher order recurrence relation for exceptional Charlier, Meixner, Hermite and Laguerre orthogonal polynomials”, Integral Transforms Spec. Funct., 26 (2015), 357–376, arXiv: 1409.4697 | DOI | MR | Zbl
[6] Durán A.J., “Exceptional Hahn and Jacobi orthogonal polynomials”, J. Approx. Theory, 214 (2017), 9–48, arXiv: 1510.02579 | DOI | MR | Zbl
[7] García-Ferrero M. A., Gómez-Ullate D., Milson R., “A Bochner type characterization theorem for exceptional orthogonal polynomials”, J. Math. Anal. Appl., 472 (2019), 584–626, arXiv: 1603.04358 | DOI | MR | Zbl
[8] García-Ferrero M. A., Gómez-Ullate D., Milson R., Confluent Darboux transformations and exceptional orthogonal polynomials, in preparation
[9] Gesztesy F., Teschl G., “On the double commutation method”, Proc. Amer. Math. Soc., 124 (1996), 1831–1840 | DOI | MR | Zbl
[10] Gómez-Ullate D., Grandati Y., Milson R., “Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials”, J. Phys. A: Math. Theor., 47 (2014), 015203, 27 pp., arXiv: 1306.5143 | DOI | MR | Zbl
[11] Gómez-Ullate D., Kamran N., Milson R., “An extended class of orthogonal polynomials defined by a Sturm–Liouville problem”, J. Math. Anal. Appl., 359 (2009), 352–367, arXiv: 0807.3939 | DOI | MR | Zbl
[12] Gómez-Ullate D., Kamran N., Milson R., “A conjecture on exceptional orthogonal polynomials”, Found. Comput. Math., 13 (2013), 615–666, arXiv: 1203.6857 | DOI | MR | Zbl
[13] Gómez-Ullate D., Kasman A., Kuijlaars A. B.J., Milson R., “Recurrence relations for exceptional Hermite polynomials”, J. Approx. Theory, 204 (2016), 1–16, arXiv: 1506.03651 | DOI | MR | Zbl
[14] Gómez-Ullate D., Marcellán F., Milson R., “Asymptotic and interlacing properties of zeros of exceptional Jacobi and Laguerre polynomials”, J. Math. Anal. Appl., 399 (2013), 480–495, arXiv: 1204.2282 | DOI | MR | Zbl
[15] Grandati Y., Bérard A., “Comments on the generalized SUSY QM partnership for Darboux–Pöschl–Teller potential and exceptional Jacobi polynomials”, J. Engrg. Math., 82 (2013), 161–171 | DOI | MR | Zbl
[16] Grandati Y., Quesne C., “Confluent chains of DBT: enlarged shape invariance and new orthogonal polynomials”, SIGMA, 11 (2015), 061, 26 pp., arXiv: 1503.07747 | DOI | MR | Zbl
[17] Hemery A. D., Veselov A. P., “Whittaker–Hill equation and semifinite-gap Schrödinger operators”, J. Math. Phys., 51 (2010), 072108, 17 pp., arXiv: 0906.1697 | DOI | MR | Zbl
[18] Horváth Á.P., “The electrostatic properties of zeros of exceptional Laguerre and Jacobi polynomials and stable interpolation”, J. Approx. Theory, 194 (2015), 87–107, arXiv: 1410.0906 | DOI | MR | Zbl
[19] Keung W.-Y., Sukhatme U. P., Wang Q. M., Imbo T. D., “Families of strictly isospectral potentials”, J. Phys. A: Math. Gen., 22 (1989), L987–L992 | DOI | MR
[20] Kuijlaars A. B.J., Milson R., “Zeros of exceptional Hermite polynomials”, J. Approx. Theory, 200 (2015), 28–39, arXiv: 1412.6364 | DOI | MR | Zbl
[21] Marquette I., Quesne C., “New families of superintegrable systems from Hermite and Laguerre exceptional orthogonal polynomials”, J. Math. Phys., 54 (2013), 042102, 16 pp., arXiv: 1211.2957 | DOI | MR | Zbl
[22] Miki H., Tsujimoto S., “A new recurrence formula for generic exceptional orthogonal polynomials”, J. Math. Phys., 56 (2015), 033502, 13 pp., arXiv: 1410.0183 | DOI | MR | Zbl
[23] Odake S., “Recurrence relations of the multi-indexed orthogonal polynomials. III”, J. Math. Phys., 57 (2016), 023514, 24 pp., arXiv: 1509.08213 | DOI | MR | Zbl
[24] Odake S., Sasaki R., “Infinitely many shape invariant potentials and new orthogonal polynomials”, Phys. Lett. B, 679 (2009), 414–417, arXiv: 0906.0142 | DOI | MR
[25] Post S., Tsujimoto S., Vinet L., “Families of superintegrable Hamiltonians constructed from exceptional polynomials”, J. Phys. A: Math. Theor., 45 (2012), 405202, 10 pp., arXiv: 1206.0480 | DOI | MR | Zbl
[26] Quesne C., “Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics”, SIGMA, 5 (2009), 084, 24 pp., arXiv: 0906.2331 | DOI | MR | Zbl
[27] Schulze-Halberg A., Roy B., “Darboux partners of pseudoscalar Dirac potentials associated with exceptional orthogonal polynomials”, Ann. Physics, 349 (2014), 159–170, arXiv: 1409.0999 | DOI | MR | Zbl
[28] Sparenberg J. M., Baye D., “Supersymmetric transformations of real potentials on the line”, J. Phys. A: Math. Gen., 28 (1995), 5079–5095 | DOI | MR | Zbl
[29] Sukumar C. V., “Supersymmetric quantum mechanics and the inverse scattering method”, J. Phys. A: Math. Gen., 18 (1985), 2937–2955 | DOI | MR
[30] Szegő G., Orthogonal Polynomials, American Mathematical Society Colloquium Publications, 23, Amer. Math. Soc., New York, 1939 | DOI | MR