The Subelliptic Heat Kernel of the Octonionic Anti-De Sitter Fibration
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this note, we study the sub-Laplacian of the $15$-dimensional octonionic anti-de Sitter space which is obtained by lifting with respect to the anti-de Sitter fibration the Laplacian of the octonionic hyperbolic space $\mathbb{O}H^1$. We also obtain two integral representations for the corresponding subelliptic heat kernel.
Keywords: sub-Laplacian, 15-dimensional octonionic anti-de Sitter space, the anti-de Sitter fibration.
@article{SIGMA_2021_17_a13,
     author = {Fabrice Baudoin and Gunhee Cho},
     title = {The {Subelliptic} {Heat} {Kernel} of the {Octonionic} {Anti-De} {Sitter} {Fibration}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a13/}
}
TY  - JOUR
AU  - Fabrice Baudoin
AU  - Gunhee Cho
TI  - The Subelliptic Heat Kernel of the Octonionic Anti-De Sitter Fibration
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a13/
LA  - en
ID  - SIGMA_2021_17_a13
ER  - 
%0 Journal Article
%A Fabrice Baudoin
%A Gunhee Cho
%T The Subelliptic Heat Kernel of the Octonionic Anti-De Sitter Fibration
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a13/
%G en
%F SIGMA_2021_17_a13
Fabrice Baudoin; Gunhee Cho. The Subelliptic Heat Kernel of the Octonionic Anti-De Sitter Fibration. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a13/

[1] Baudoin F., Cho G., “The subelliptic heat kernel of the octonionic Hopf fibration”, Potential Anal. (to appear) , arXiv: 1904.08568 | DOI | MR

[2] Baudoin F., Demni N., “Integral representation of the sub-elliptic heat kernel on the complex anti-de Sitter fibration”, Arch. Math. (Basel), 111 (2018), 399–406, arXiv: 1802.04199 | DOI | MR | Zbl

[3] Baudoin F., Demni N., Wang J., “The horizontal heat kernel on the quaternionic anti-de Sitter spaces and related twistor spaces”, Potential Anal., 52 (2020), 281–300, arXiv: 1805.06796 | DOI | MR | Zbl

[4] Baudoin F., Grong E., Molino G., Rizzi L., $H$-type foliations, arXiv: 1812.02563

[5] Baudoin F., Wang J., “Stochastic areas, winding numbers and Hopf fibrations”, Probab. Theory Related Fields, 169 (2017), 977–1005 | DOI | MR | Zbl

[6] Bădiţoiu G., Ianuş S., “Semi-Riemannian submersions from real and complex pseudo-hyperbolic spaces”, Differential Geom. Appl., 16 (2002), 79–94, arXiv: math.DG/0005228 | DOI | MR

[7] Eldredge N., “Precise estimates for the subelliptic heat kernel on $H$-type groups”, J. Math. Pures Appl., 92 (2009), 52–85 | DOI | MR | Zbl

[8] Intissar A., Ould Moustapha M. V., “Explicit formulae for the wave kernels for the Laplacians $\Delta_{\alpha\beta}$ in the Bergman ball $B^n$, $n\geq 1$”, Ann. Global Anal. Geom., 15 (1997), 221–234 | DOI | MR | Zbl

[9] Tian Y., “Matrix representations of octonions and their applications”, Adv. Appl. Clifford Algebras, 10 (2000), 61–90, arXiv: math.RA/0003166 | DOI | MR | Zbl

[10] Wang J., “The subelliptic heat kernel on the anti-de Sitter space”, Potential Anal., 45 (2016), 635–653, arXiv: 1204.3642 | DOI | MR | Zbl