@article{SIGMA_2021_17_a13,
author = {Fabrice Baudoin and Gunhee Cho},
title = {The {Subelliptic} {Heat} {Kernel} of the {Octonionic} {Anti-De} {Sitter} {Fibration}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a13/}
}
TY - JOUR AU - Fabrice Baudoin AU - Gunhee Cho TI - The Subelliptic Heat Kernel of the Octonionic Anti-De Sitter Fibration JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a13/ LA - en ID - SIGMA_2021_17_a13 ER -
Fabrice Baudoin; Gunhee Cho. The Subelliptic Heat Kernel of the Octonionic Anti-De Sitter Fibration. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a13/
[1] Baudoin F., Cho G., “The subelliptic heat kernel of the octonionic Hopf fibration”, Potential Anal. (to appear) , arXiv: 1904.08568 | DOI | MR
[2] Baudoin F., Demni N., “Integral representation of the sub-elliptic heat kernel on the complex anti-de Sitter fibration”, Arch. Math. (Basel), 111 (2018), 399–406, arXiv: 1802.04199 | DOI | MR | Zbl
[3] Baudoin F., Demni N., Wang J., “The horizontal heat kernel on the quaternionic anti-de Sitter spaces and related twistor spaces”, Potential Anal., 52 (2020), 281–300, arXiv: 1805.06796 | DOI | MR | Zbl
[4] Baudoin F., Grong E., Molino G., Rizzi L., $H$-type foliations, arXiv: 1812.02563
[5] Baudoin F., Wang J., “Stochastic areas, winding numbers and Hopf fibrations”, Probab. Theory Related Fields, 169 (2017), 977–1005 | DOI | MR | Zbl
[6] Bădiţoiu G., Ianuş S., “Semi-Riemannian submersions from real and complex pseudo-hyperbolic spaces”, Differential Geom. Appl., 16 (2002), 79–94, arXiv: math.DG/0005228 | DOI | MR
[7] Eldredge N., “Precise estimates for the subelliptic heat kernel on $H$-type groups”, J. Math. Pures Appl., 92 (2009), 52–85 | DOI | MR | Zbl
[8] Intissar A., Ould Moustapha M. V., “Explicit formulae for the wave kernels for the Laplacians $\Delta_{\alpha\beta}$ in the Bergman ball $B^n$, $n\geq 1$”, Ann. Global Anal. Geom., 15 (1997), 221–234 | DOI | MR | Zbl
[9] Tian Y., “Matrix representations of octonions and their applications”, Adv. Appl. Clifford Algebras, 10 (2000), 61–90, arXiv: math.RA/0003166 | DOI | MR | Zbl
[10] Wang J., “The subelliptic heat kernel on the anti-de Sitter space”, Potential Anal., 45 (2016), 635–653, arXiv: 1204.3642 | DOI | MR | Zbl