@article{SIGMA_2021_17_a12,
author = {Jialong Deng},
title = {Curvature-Dimension {Condition} {Meets} {Gromov's} $n${-Volumic} {Scalar} {Curvature}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a12/}
}
Jialong Deng. Curvature-Dimension Condition Meets Gromov's $n$-Volumic Scalar Curvature. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a12/
[1] Abedin F., Corvino J., “On the $P$-scalar curvature”, J. Geom. Anal., 27 (2017), 1589–1623 | DOI | MR | Zbl
[2] Ambrosio L., Gigli N., Savaré G., “Metric measure spaces with Riemannian Ricci curvature bounded from below”, Duke Math. J., 163 (2014), 1405–1490, arXiv: 1109.0222 | DOI | MR | Zbl
[3] Athreya S., Löhr W., Winter A., “The gap between Gromov-vague and Gromov–Hausdorff-vague topology”, Stochastic Process. Appl., 126 (2016), 2527–2553, arXiv: 1407.6309 | DOI | MR | Zbl
[4] Bray H. L., The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature, Ph.D. Thesis, Stanford University, 1997, arXiv: 0902.3241 | MR | Zbl
[5] Brendle S., “Rigidity phenomena involving scalar curvature”, Surveys in Differential Geometry, Surv. Differ. Geom., 17, Int. Press, Boston, MA, 2012, 179–202, arXiv: 1008.3097 | DOI | MR | Zbl
[6] Case J. S., “Conformal invariants measuring the best constants for Gagliardo–Nirenberg–Sobolev inequalities”, Calc. Var. Partial Differential Equations, 48 (2013), 507–526, arXiv: 1112.3977 | DOI | MR | Zbl
[7] Chang S.-Y.A., Gursky M. J., Yang P., “Conformal invariants associated to a measure”, Proc. Natl. Acad. Sci. USA, 103 (2006), 2535–2540 | DOI | MR | Zbl
[8] Cheng X., Mejia T., Zhou D., “Stability and compactness for complete $f$-minimal surfaces”, Trans. Amer. Math. Soc., 367 (2015), 4041–4059, arXiv: 1210.8076 | DOI | MR | Zbl
[9] Crowley D., Schick T., “The Gromoll filtration, $KO$-characteristic classes and metrics of positive scalar curvature”, Geom. Topol., 17 (2013), 1773–1789, arXiv: 1204.6474 | DOI | MR | Zbl
[10] Fan E. M., “Topology of three-manifolds with positive $P$-scalar curvature”, Proc. Amer. Math. Soc., 136 (2008), 3255–3261 | DOI | MR | Zbl
[11] Fischer-Colbrie D., Schoen R., “The structure of complete stable minimal surfaces in $3$-manifolds of nonnegative scalar curvature”, Comm. Pure Appl. Math., 33 (1980), 199–211 | DOI | MR | Zbl
[12] Gigli N., On the differential structure of metric measure spaces and applications, Mem. Amer. Math. Soc., 236, 2015, vi+91 pp., arXiv: 1205.6622 | DOI | MR
[13] Goette S., Semmelmann U., “Scalar curvature estimates for compact symmetric spaces”, Differential Geom. Appl., 16 (2002), 65–78, arXiv: math.DG/0010199 | DOI | MR | Zbl
[14] Gray A., Vanhecke L., “Riemannian geometry as determined by the volumes of small geodesic balls”, Acta Math., 142 (1979), 157–198 | DOI | MR | Zbl
[15] Gromov M., “Positive curvature, macroscopic dimension, spectral gaps and higher signatures”, Functional Analysis on the Eve of the 21st Century (New Brunswick, NJ, 1993), v. II, Progr. Math., 132, Birkhäuser Boston, Boston, MA, 1996, 1–213 | DOI | MR | Zbl
[16] Gromov M., “Isoperimetry of waists and concentration of maps”, Geom. Funct. Anal., 13 (2003), 178–215 | DOI | MR | Zbl
[17] Gromov M., “Dirac and Plateau billiards in domains with corners”, Cent. Eur. J. Math., 12 (2014), 1109–1156, arXiv: 1811.04318 | DOI | MR | Zbl
[18] Gromov M., 101 questions, problems and conjectures around scalar curvature, 2017 https://www.ihes.fr/g̃romov/wp-content/uploads/2018/08/101-problemsOct1-2017.pdf
[19] Gromov M., “Metric inequalities with scalar curvature”, Geom. Funct. Anal., 28 (2018), 645–726, arXiv: 1710.04655 | DOI | MR | Zbl
[20] Gromov M., Four lectures on scalar curvature, arXiv: 1908.10612
[21] Gromov M., Lawson Jr. H.B., “Positive scalar curvature and the Dirac operator on complete Riemannian manifolds”, Inst. Hautes Études Sci. Publ. Math., 58 (1983), 83–196 | DOI | MR | Zbl
[22] Hanke B., Pape D., Schick T., “Codimension two index obstructions to positive scalar curvature”, Ann. Inst. Fourier (Grenoble), 65 (2015), 2681–2710, arXiv: 1402.4094 | DOI | MR | Zbl
[23] Hitchin N., “Harmonic spinors”, Adv. Math., 14 (1974), 1–55 | DOI | MR | Zbl
[24] Kazdan J. L., “Deformation to positive scalar curvature on complete manifolds”, Math. Ann., 261 (1982), 227–234 | DOI | MR | Zbl
[25] Kazdan J. L., Warner F. W., “Scalar curvature and conformal deformation of Riemannian structure”, J. Differential Geometry, 10 (1975), 113–134 | DOI | MR | Zbl
[26] Lasserre J. B., “On the setwise convergence of sequences of measures”, J. Appl. Math. Stochastic Anal., 10 (1997), 131–136 | DOI | MR | Zbl
[27] Llarull M., “Sharp estimates and the Dirac operator”, Math. Ann., 310 (1998), 55–71 | DOI | MR | Zbl
[28] Lučić D., Pasqualetto E., “Infinitesimal Hilbertianity of weighted Riemannian manifolds”, Canad. Math. Bull., 63 (2020), 118–140, arXiv: 1809.05919 | DOI | MR | Zbl
[29] Ohta S., “On the measure contraction property of metric measure spaces”, Comment. Math. Helv., 82 (2007), 805–828 | DOI | MR | Zbl
[30] Ohta S., “Finsler interpolation inequalities”, Calc. Var. Partial Differential Equations, 36 (2009), 211–249 | DOI | MR | Zbl
[31] Perelman G., The entropy formula for the Ricci flow and its geometric applications, arXiv: math.DG/0211159
[32] Petrunin A., “Alexandrov meets Lott–Villani–Sturm”, Münster J. Math., 4 (2011), 53–64, arXiv: 1003.5948 | MR | Zbl
[33] Qian Z., “Estimates for weighted volumes and applications”, Quart. J. Math. Oxford Ser. (2), 48 (1997), 235–242 | DOI | MR | Zbl
[34] Rosales C., Cañete A., Bayle V., Morgan F., “On the isoperimetric problem in Euclidean space with density”, Calc. Var. Partial Differential Equations, 31 (2008), 27–46, arXiv: math.DG/0602135 | DOI | MR | Zbl
[35] Rosenberg J., “$C^{\ast} $-algebras, positive scalar curvature, and the Novikov conjecture”, Inst. Hautes Études Sci. Publ. Math., 58 (1983), 197–212 | DOI | MR
[36] Schoen R., “Conformal deformation of a Riemannian metric to constant scalar curvature”, J. Differential Geom., 20 (1984), 479–495 | DOI | MR | Zbl
[37] Schoen R., Yau S. T., “Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature”, Ann. of Math., 110 (1979), 127–142 | DOI | MR | Zbl
[38] Sturm K.-T., “On the geometry of metric measure spaces. II”, Acta Math., 196 (2006), 133–177 | DOI | MR | Zbl
[39] Villani C., Optimal transport: old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl
[40] Wylie W., “Sectional curvature for Riemannian manifolds with density”, Geom. Dedicata, 178 (2015), 151–169, arXiv: 1311.0267 | DOI | MR | Zbl
[41] Young L. S., “Dimension, entropy and Lyapunov exponents”, Ergodic Theory Dynam. Systems, 2 (1982), 109–124 | DOI | MR | Zbl
[42] Zeidler R., “An index obstruction to positive scalar curvature on fiber bundles over aspherical manifolds”, Algebr. Geom. Topol., 17 (2017), 3081–3094, arXiv: 1512.06781 | DOI | MR | Zbl
[43] Zhang H.-C., Zhu X.-P., “Ricci curvature on Alexandrov spaces and rigidity theorems”, Comm. Anal. Geom., 18 (2010), 503–553, arXiv: 0912.3190 | DOI | MR