@article{SIGMA_2021_17_a112,
author = {Zhengye Zhou},
title = {Orthogonal {Polynomial} {Stochastic} {Duality} {Functions} for {Multi-Species} {SEP}$(2j)$ and {Multi-Species} {IRW}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a112/}
}
TY - JOUR AU - Zhengye Zhou TI - Orthogonal Polynomial Stochastic Duality Functions for Multi-Species SEP$(2j)$ and Multi-Species IRW JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a112/ LA - en ID - SIGMA_2021_17_a112 ER -
%0 Journal Article %A Zhengye Zhou %T Orthogonal Polynomial Stochastic Duality Functions for Multi-Species SEP$(2j)$ and Multi-Species IRW %J Symmetry, integrability and geometry: methods and applications %D 2021 %V 17 %U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a112/ %G en %F SIGMA_2021_17_a112
Zhengye Zhou. Orthogonal Polynomial Stochastic Duality Functions for Multi-Species SEP$(2j)$ and Multi-Species IRW. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a112/
[1] Ayala M., Carinci G., Redig F., “Quantitative Boltzmann–Gibbs principles via orthogonal polynomial duality”, J. Stat. Phys., 171 (2018), 980–999, arXiv: 1712.08492 | DOI | MR | Zbl
[2] Ayala M., Carinci G., Redig F., “Higher order fluctuation fields and orthogonal duality polynomials”, Electron. J. Probab., 26 (2021), 27, 35 pp., arXiv: 2004.08412 | DOI | MR | Zbl
[3] Borodin A., Corwin I., Sasamoto T., “From duality to determinants for $q$-TASEP and ASEP”, Ann. Probab., 42 (2014), 2314–2382, arXiv: 1207.5035 | DOI | MR | Zbl
[4] Caputo P., “On the spectral gap of the Kac walk and other binary collision processes”, ALEA Lat. Am. J. Probab. Math. Stat., 4 (2008), 205–222, arXiv: 0807.3415 | MR | Zbl
[5] Carinci G., Franceschini C., Giardinà C., Groenevelt W., Redig F., “Orthogonal dualities of Markov processes and unitary symmetries”, SIGMA, 15 (2019), 053, 27 pp., arXiv: 1812.08553 | DOI | MR | Zbl
[6] Chen J. P., Sau F., “Higher-order hydrodynamics and equilibrium fluctuations of interacting particle systems”, Markov Process. Related Fields, 27 (2021), 339–380, arXiv: 2008.13403 | Zbl
[7] Corwin I., Shen H., Tsai L.-C., “${\rm ASEP}(q,j)$ converges to the KPZ equation”, Ann. Inst. Henri Poincaré Probab. Stat., 54 (2018), 995–1012, arXiv: 1602.01908 | DOI | MR | Zbl
[8] Dermoune A., Heinrich P., “Spectral gap for multicolor nearest-neighbor exclusion processes with site disorder”, J. Stat. Phys., 131 (2008), 117–125 | DOI | MR | Zbl
[9] Franceschini C., Giardinà C., Stochastic duality and orthogonal polynomials, arXiv: 1701.09115
[10] Giardinà C., Kurchan J., Redig F., Vafayi K., “Duality and hidden symmetries in interacting particle systems”, J. Stat. Phys., 135 (2009), 25–55, arXiv: 0810.1202 | DOI | MR | Zbl
[11] Griffiths R. C., “Orthogonal polynomials on the multinomial distribution”, Aust. J. Stat., 13 (1971), 27–35 | DOI | MR | Zbl
[12] Groenevelt W., “Orthogonal stochastic duality functions from Lie algebra representations”, J. Stat. Phys., 174 (2019), 97–119, arXiv: 1709.05997 | DOI | MR | Zbl
[13] Iliev P., “A Lie-theoretic interpretation of multivariate hypergeometric polynomials”, Compos. Math., 148 (2012), 991–1002, arXiv: 1101.1683 | DOI | MR | Zbl
[14] Kuan J., “A multi-species ${\rm ASEP}(q,j)$ and $q$-TAZRP with stochastic duality”, Int. Math. Res. Not., 2018 (2018), 5378–5416, arXiv: 1605.00691 | DOI | MR | Zbl
[15] Kuan J., Stochastic fusion of interacting particle systems and duality functions, arXiv: 1908.02359
[16] Redig F., Sau F., “Factorized duality, stationary product measures and generating functions”, J. Stat. Phys., 172 (2018), 980–1008, arXiv: 1702.07237 | DOI | MR | Zbl
[17] Zhou Z., “Hydrodynamic limit for a $d$-dimensional open symmetric exclusion process”, Electron. Commun. Probab., 25 (2020), 76, 8 pp., arXiv: 2004.14279 | DOI | MR | Zbl