Form Factors of the Heisenberg Spin Chain in the Thermodynamic Limit: Dealing with Complex Bethe Roots
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we study the thermodynamic limit of the form factors of the $XXX$ Heisenberg spin chain using the algebraic Bethe ansatz approach. Our main goal is to express the form factors for the low-lying excited states as determinants of matrices that remain finite dimensional in the thermodynamic limit. We show how to treat all types of the complex roots of the Bethe equations within this framework. In particular we demonstrate that the Gaudin determinant for the higher level Bethe equations arises naturally from the algebraic Bethe ansatz.
Keywords: form factors, correlation functions, algebraic Bethe ansatz.
Mots-clés : spin chains
@article{SIGMA_2021_17_a111,
     author = {Nikolai Kitanine and Giridhar Kulkarni},
     title = {Form {Factors} of the {Heisenberg} {Spin} {Chain} in the {Thermodynamic} {Limit:} {Dealing} with {Complex} {Bethe} {Roots}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a111/}
}
TY  - JOUR
AU  - Nikolai Kitanine
AU  - Giridhar Kulkarni
TI  - Form Factors of the Heisenberg Spin Chain in the Thermodynamic Limit: Dealing with Complex Bethe Roots
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a111/
LA  - en
ID  - SIGMA_2021_17_a111
ER  - 
%0 Journal Article
%A Nikolai Kitanine
%A Giridhar Kulkarni
%T Form Factors of the Heisenberg Spin Chain in the Thermodynamic Limit: Dealing with Complex Bethe Roots
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a111/
%G en
%F SIGMA_2021_17_a111
Nikolai Kitanine; Giridhar Kulkarni. Form Factors of the Heisenberg Spin Chain in the Thermodynamic Limit: Dealing with Complex Bethe Roots. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a111/

[1] Abada A., Bougourzi A. H., Si-Lakhal B., “Exact four-spinon dynamical correlation function of the Heisenberg model”, Nuclear Phys. B, 497 (1997), 733–753, arXiv: hep-th/9702028 | DOI | MR | Zbl

[2] Babelon O., de Vega H. J., Viallet C.-M., “Analysis of the Bethe ansatz equations of the $XXZ$ model”, Nuclear Phys. B, 220 (1983), 13–34 | DOI | MR

[3] Babenko C., Göhmann F., Kozlowski K. K., Suzuki J., “A thermal form factor series for the longitudinal two-point function of the Heisenberg–Ising chain in the antiferromagnetic massive regime”, J. Math. Phys., 62 (2021), 041901, 49 pp., arXiv: 2011.12752 | DOI | MR | Zbl

[4] Bethe H., “Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette”, Z. Phys., 71 (1931), 205–226 | DOI

[5] Bougourzi A. H., Couture M., Kacir M., “Exact two-spinon dynamical correlation function of the one-dimensional Heisenberg model”, Phys. Rev. B, 54 (1996), R12669–R12672, arXiv: q-alg/9604019 | DOI

[6] Caux J.-S., Hagemans R., “The four-spinon dynamical structure factor of the Heisenberg chain”, J. Stat. Mech. Theory Exp., 2006 (2006), P12013, 14 pp., arXiv: cond-mat/0611319 | DOI

[7] Caux J.-S., Konno H., Sorrell M., Weston R., “Exact form-factor results for the longitudinal structure factor of the massless $XXZ$ model in zero field”, J. Stat. Mech. Theory Exp., 2012 (2012), P01007, 40 pp., arXiv: 1110.6641 | DOI | MR

[8] Destri C., Lowenstein J. H., “Analysis of the Bethe-ansatz equations of the chiral-invariant Gross–Neveu model”, Nuclear Phys. B, 205 (1982), 369–385 | DOI | MR

[9] Dugave M., Göhmann F., Kozlowski K. K., Suzuki J., “On form-factor expansions for the $XXZ$ chain in the massive regime”, J. Stat. Mech. Theory Exp., 2015 (2015), P05037, 49 pp., arXiv: 1412.8217 | DOI | MR | Zbl

[10] Faddeev L. D., “Quantum completely integrable models in field theory”, Mathematical Physics Reviews, v. 1, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., 1, Harwood Academic, Chur, 1980, 107–155 | MR

[11] Faddeev L. D., Takhtajan L. A., “Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model”, J. Sov. Math., 24 (1984), 241–267 | DOI | Zbl

[12] Faddeev L. D., Takhtajan L. A., What is the spin of a spin wave?, Phys. Lett. A, 85 (1981), 375–377 | DOI | MR

[13] Foda O., Wheeler M., “Variations on Slavnov's scalar product”, J. High Energy Phys., 2012:10 (2012), 096, 23 pp., arXiv: 1207.6871 | DOI | MR | Zbl

[14] Gaudin M., La fonction d'onde de Bethe, Collection du Commissariat à l'Énergie Atomique: Série Scientifique, Masson, Paris, 1983 | MR

[15] Gaudin M., McCoy B. M., Wu T.T., “Normalization sum for the Bethe's hypothesis wave functions of the Heisenberg–Ising chain”, Phys. Rev. D, 23 (1981), 417–419 | DOI | MR

[16] Jimbo M., Miki K., Miwa T., Nakayashiki A., “Correlation functions of the $XXZ$ model for $\Delta-1$”, Phys. Lett. A, 168 (1992), 256–263, arXiv: hep-th/9205055 | DOI | MR

[17] Jimbo M., Miwa T., Algebraic analysis of solvable lattice models, CBMS Regional Conference Series in Mathematics, 85, Amer. Math. Soc., Providence, RI, 1995 | MR | Zbl

[18] Jimbo M., Miwa T., Smirnov F., “Hidden Grassmann structure in the $XXZ$ model V: sine-Gordon model”, Lett. Math. Phys., 96 (2011), 325–365, arXiv: 1007.0556 | DOI | MR | Zbl

[19] Kirillov A. N., Korepin V. E., “Norms of bound states”, J. Sov. Math., 40 (1988), 13–21 | DOI | Zbl

[20] Kitanine N., Kozlowski K. K., Maillet J. M., Slavnov N. A., Terras V., “On the thermodynamic limit of form factors in the massless $XXZ$ Heisenberg chain”, J. Math. Phys., 50 (2009), 095209, 24 pp., arXiv: 0903.2916 | DOI | MR | Zbl

[21] Kitanine N., Kozlowski K. K., Maillet J. M., Slavnov N. A., Terras V., “The thermodynamic limit of particle-hole form factors in the massless $XXZ$ Heisenberg chain”, J. Stat. Mech. Theory Exp., 2011 (2011), P05028, 34 pp., arXiv: 1003.4557 | DOI | MR

[22] Kitanine N., Kozlowski K. K., Maillet J. M., Slavnov N. A., Terras V., “A form factor approach to the asymptotic behavior of correlation functions in critical models”, J. Stat. Mech. Theory Exp., 2011 (2011), P12010, 27 pp., arXiv: 1110.0803 | DOI | MR

[23] Kitanine N., Kozlowski K. K., Maillet J. M., Slavnov N. A., Terras V., “Form factor approach to dynamical correlation functions in critical models”, J. Stat. Mech. Theory Exp., 2012 (2012), P09001, 33 pp., arXiv: 1206.2630 | DOI | MR | Zbl

[24] Kitanine N., Kulkarni G., “Thermodynamic limit of the two-spinon form factors for the zero field $XXX$ chain”, SciPost Phys., 6 (2019), 076, 26 pp., arXiv: 1903.09058 | DOI | MR

[25] Kitanine N., Maillet J. M., Terras V., “Form factors of the $XXZ$ Heisenberg spin-$\frac 12$ finite chain”, Nuclear Phys. B, 554 (1999), 647–678, arXiv: math-ph/9807020 | DOI | MR | Zbl

[26] Kitanine N., Maillet J. M., Terras V., “Correlation functions of the $XXZ$ Heisenberg spin-$\frac{1}{2}$ chain in a magnetic field”, Nuclear Phys. B, 567 (2000), 554–582, arXiv: math-ph/9907019 | DOI | MR | Zbl

[27] Korepin V. E., “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl

[28] Kozlowski K. K., “Form factors of bound states in the $XXZ$ chain”, J. Phys. A: Math. Theor., 50 (2017), 184002, 83 pp., arXiv: 1611.01489 | DOI | MR | Zbl

[29] Kozlowski K. K., “Long-distance and large-time asymptotic behaviour of dynamic correlation functions in the massless regime of the $XXZ$ spin-1/2 chain”, J. Math. Phys., 60 (2019), 073303, 42 pp., arXiv: 1903.00207 | DOI | MR | Zbl

[30] Kulkarni G., Asymptotic analysis of the form-factors of quantum spin chains, Ph.D. Thesis, Université de Bourgogne, 2020

[31] Maillet J. M., Terras V., “On the quantum inverse scattering problem”, Nuclear Phys. B, 575 (2000), 627–644, arXiv: hep-th/9911030 | DOI | MR | Zbl

[32] Mourigal M., Enderle M., Klöpperpieper A., Caux J.-S., Stunault A., Rønnow H. M., “Fractional spinon excitations in the quantum Heisenberg antiferromagnetic chain”, Nature Phys., 9 (2013), 435–441, arXiv: 1306.4678 | DOI

[33] Sklyanin E. K., Takhtajan L. A., Faddeev L. D., “Quantum inverse problem method. I”, Theoret. and Math. Phys., 40 (1979), 688–706 | DOI | MR

[34] Slavnov N. A., “Calculation of scalar products of wave functions and form-factors in the framework of the algebraic Bethe ansatz”, Theoret. and Math. Phys., 79 (1989), 502–508 | DOI | MR

[35] Smirnov F. A., Form factors in completely integrable models of quantum field theory, Advanced Series in Mathematical Physics, 14, World Sci. Publ. Co., Inc., River Edge, NJ, 1992 | DOI | MR | Zbl

[36] Woynarovich F., “On the $S_z=0$ excited states of an anisotropic Heisenberg chain”, J. Phys. A: Math. Gen., 15 (1982), 2985–2996 | DOI | MR

[37] Yang C. N., Yang C. P., “One-dimensional chain of anisotropic spin-spin interactions. I Proof of Bethe's hypothesis for ground state in a finite system”, Phys. Rev., 150 (1966), 321–327 | DOI | MR