@article{SIGMA_2021_17_a109,
author = {Satoru Urano},
title = {A {Composite} {Order} {Generalization} of {Modular} {Moonshine}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a109/}
}
Satoru Urano. A Composite Order Generalization of Modular Moonshine. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a109/
[1] Borcherds R. E., “Monstrous moonshine and monstrous Lie superalgebras”, Invent. Math., 109 (1992), 405–444 | DOI | MR | Zbl
[2] Borcherds R. E., “Modular moonshine. III”, Duke Math. J., 93 (1998), 129–154, arXiv: math.AG/9801101 | DOI | MR | Zbl
[3] Borcherds R. E., Ryba A. J. E., “Modular Moonshine. II”, Duke Math. J., 83 (1996), 435–459 | DOI | MR | Zbl
[4] Carnahan S., “A self-dual integral form of the Moonshine module”, SIGMA, 15 (2019), 030, 36 pp., arXiv: 1710.00737 | DOI | MR | Zbl
[5] Cassels J. W. S., Fröhlich A. (eds.), Algebraic number theory, Academic Press, London, Thompson Book Co., Inc., Washington, D.C., 1967 | MR | Zbl
[6] Conway J. H., Norton S. P., “Monstrous moonshine”, Bull. London Math. Soc., 11 (1979), 308–339 | DOI | MR | Zbl
[7] Frenkel I., Lepowsky J., Meurman A., Vertex operator algebras and the Monster, Pure and Applied Mathematics, 134, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl