Scalar Curvatures of Invariant Almost Hermitian Structures on Generalized Flag Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study invariant almost Hermitian geometry on generalized flag manifolds. We will focus on providing examples of Kähler like scalar curvature metric, that is, almost Hermitian structures $(g,J)$ satisfying $s=2s_{\rm C}$, where $s$ is Riemannian scalar curvature and $s_{\rm C}$ is the Chern scalar curvature.
Keywords: curvature of almost Hermitian structures, generalized flag manifolds, Kähler like scalar curvature.
@article{SIGMA_2021_17_a108,
     author = {Lino Grama and Ailton R. Oliveira},
     title = {Scalar {Curvatures} of {Invariant} {Almost} {Hermitian} {Structures} on {Generalized} {Flag} {Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a108/}
}
TY  - JOUR
AU  - Lino Grama
AU  - Ailton R. Oliveira
TI  - Scalar Curvatures of Invariant Almost Hermitian Structures on Generalized Flag Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a108/
LA  - en
ID  - SIGMA_2021_17_a108
ER  - 
%0 Journal Article
%A Lino Grama
%A Ailton R. Oliveira
%T Scalar Curvatures of Invariant Almost Hermitian Structures on Generalized Flag Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a108/
%G en
%F SIGMA_2021_17_a108
Lino Grama; Ailton R. Oliveira. Scalar Curvatures of Invariant Almost Hermitian Structures on Generalized Flag Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a108/

[1] Alekseevsky D. V., “Flag manifolds”, Zb. Rad. Mat. Inst. Beograd. (N.S.), 6 (1997), 3–35 | MR | Zbl

[2] Apostolov V., Drăghici T., “Almost Kähler 4-manifolds with $J$-invariant Ricci tensor and special Weyl tensor”, Q. J. Math., 51 (2000), 275–294, arXiv: math.DG/9911196 | DOI | MR | Zbl

[3] Arvanitoyeorgos A., “Geometry of flag manifolds”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 957–974 | DOI | MR | Zbl

[4] Arvanitoyeorgos A., Chrysikos I., “Invariant Einstein metrics on generalized flag manifolds with two isotropy summands”, J. Aust. Math. Soc., 90 (2011), 237–251, arXiv: 0902.1826 | DOI | MR | Zbl

[5] Arvanitoyeorgos A., Chrysikos I., Sakane Y., “Homogeneous Einstein metrics on $G_2/T$”, Proc. Amer. Math. Soc., 141 (2013), 2485–2499, arXiv: 1010.3661 | DOI | MR | Zbl

[6] Besse A. L., Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987 | DOI | MR | Zbl

[7] Borel A., Hirzebruch F., “Characteristic classes and homogeneous spaces. I”, Amer. J. Math., 80 (1958), 458–538 | DOI | MR

[8] Chern S.-S., “Characteristic classes of Hermitian manifolds”, Ann. of Math., 47 (1946), 85–121 | DOI | MR | Zbl

[9] Dabkowski M. G., Lock M. T., “An equivalence of scalar curvatures on Hermitian manifolds”, J. Geom. Anal., 27 (2017), 239–270, arXiv: 1505.02726 | DOI | MR | Zbl

[10] Friedrich T., Ivanov S., “Parallel spinors and connections with skew-symmetric torsion in string theory”, Asian J. Math., 6 (2002), 303–335, arXiv: math.DG/0102142 | DOI | MR | Zbl

[11] Fu J., Zhou X., Twistor geometry of Hermitian surfaces induced by canonical connections, arXiv: 1803.03894

[12] Fu J., Zhou X., Scalar curvatures in almost Hermitian geometry and some applications, arXiv: 1901.10130

[13] Gauduchon P., “La $1$-forme de torsion d'une variété hermitienne compacte”, Math. Ann., 267 (1984), 495–518 | DOI | MR | Zbl

[14] Gauduchon P., “Hermitian connections and Dirac operators”, Boll. Un. Mat. Ital. B, 11 (1997), 257–288 | MR | Zbl

[15] Grama L., Lima K. N. S., “Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on maximal flag manifolds”, Differential Geom. Appl., 73 (2020), 101684, 41 pp., arXiv: 1911.06094 | DOI | MR | Zbl

[16] Gray A., Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura Appl. (4), 123 (1980), 35–58 | DOI | MR | Zbl

[17] Ivanov S., Papadopoulos G., “Vanishing theorems and string backgrounds”, Classical Quantum Gravity, 18 (2001), 1089–1110, arXiv: math.DG/0010038 | DOI | MR | Zbl

[18] Lejmi M., Upmeier M., “Integrability theorems and conformally constant Chern scalar curvature metrics in almost Hermitian geometry”, Comm. Anal. Geom., 28 (2020), 1603–1645, arXiv: 1703.01323 | DOI | MR | Zbl

[19] Liu K., Yang X., “Ricci curvatures on Hermitian manifolds”, Trans. Amer. Math. Soc., 369 (2017), 5157–5196, arXiv: 1404.2481 | DOI | MR | Zbl

[20] San Martin L. A.B., de Cássia de J. Silva R., “Invariant nearly-Kähler structures”, Geom. Dedicata, 121 (2006), 143–154 | DOI | MR | Zbl

[21] San Martin L. A.B., Negreiros C. J. C., “Invariant almost Hermitian structures on flag manifolds”, Adv. Math., 178 (2003), 277–310 | DOI | MR | Zbl

[22] Tricerri F., Vanhecke L., “Curvature tensors on almost Hermitian manifolds”, Trans. Amer. Math. Soc., 267 (1981), 365–397 | DOI | MR

[23] Wolf J. A., Gray A., “Homogeneous spaces defined by Lie group automorphisms. II”, J. Differential Geometry, 2 (1968), 115–159 | DOI | MR | Zbl