The Lattice Sine-Gordon Equation as a Superposition Formula for an NLS-Type System
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We treat the lattice sine-Gordon equation and two of its generalised symmetries as a compatible system. Elimination of shifts from the two symmetries of the lattice sine-Gordon equation yields an integrable NLS-type system. An auto-Bäcklund transformation and a superposition formula for the NLS-type system is obtained by elimination of shifts from the lattice sine-Gordon equation and its down-shifted version. We use the obtained formulae to calculate a superposition of two and three elementary solutions.
Keywords: quad-equation, NLS-type system, auto-Bäcklund transformation.
@article{SIGMA_2021_17_a107,
     author = {Dmitry K. Demskoi},
     title = {The {Lattice} {Sine-Gordon} {Equation} as a {Superposition} {Formula} for an {NLS-Type} {System}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a107/}
}
TY  - JOUR
AU  - Dmitry K. Demskoi
TI  - The Lattice Sine-Gordon Equation as a Superposition Formula for an NLS-Type System
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a107/
LA  - en
ID  - SIGMA_2021_17_a107
ER  - 
%0 Journal Article
%A Dmitry K. Demskoi
%T The Lattice Sine-Gordon Equation as a Superposition Formula for an NLS-Type System
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a107/
%G en
%F SIGMA_2021_17_a107
Dmitry K. Demskoi. The Lattice Sine-Gordon Equation as a Superposition Formula for an NLS-Type System. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a107/

[1] Adler V. E., “Integrable seven-point discrete equations and second-order evolution chains”, Theoret. and Math. Phys., 195 (2018), 513–528, arXiv: 1705.10636 | DOI | MR | Zbl

[2] Adler V. E., Bobenko A. I., Suris Yu.B., “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233 (2003), 513–543, arXiv: nlin.SI/0202024 | DOI | MR | Zbl

[3] Adler V. E., Startsev S.Ya., “On discrete analogues of the Liouville equation”, Theoret. and Math. Phys., 121 (1999), 1484–1495, arXiv: solv-int/9902016 | DOI | MR | Zbl

[4] Cherdantsev I. Y., Yamilov R. I., “Master symmetries for differential-difference equations of the Volterra type”, Phys. D, 87 (1995), 140–144 | DOI | MR | Zbl

[5] Demskoi D. K., “Quad-equations and auto-Bäcklund transformations of NLS-type systems”, J. Phys. A: Math. Theor., 47 (2014), 165204, 8 pp., arXiv: 1310.5769 | DOI | MR | Zbl

[6] Demskoi D. K., Tran D. T., “Darboux integrability of determinant and equations for principal minors”, Nonlinearity, 29 (2016), 1973–1991, arXiv: 1411.5758 | DOI | MR | Zbl

[7] Fordy A. P., Xenitidis P., “$\mathbb Z_N$ graded discrete Lax pairs and integrable difference equations”, J. Phys. A: Math. Theor., 50 (2017), 165205, 30 pp., arXiv: 1411.6059 | DOI | MR | Zbl

[8] Fordy A. P., Xenitidis P., Symmetries of $\mathbb Z_N$ graded discrete integrable systems, J. Phys. A: Math. Theor., 53 (2020), 235201, 30 pp. | DOI | MR

[9] Hirota R., “Nonlinear partial difference equations. III Discrete sine-Gordon equation”, J. Phys. Soc. Japan, 43 (1977), 2079–2086 | DOI | MR | Zbl

[10] Hirota R., “Nonlinear partial difference equations. V Nonlinear equations reducible to linear equations”, J. Phys. Soc. Japan, 46 (1979), 312–319 | DOI | MR

[11] Levi D., “Nonlinear differential-difference equations as Bäcklund transformations”, J. Phys. A: Math. Gen., 14 (1981), 1083–1098 | DOI | MR | Zbl

[12] Mikhailov A. V., Shabat A. B., Yamilov R. I., “Extension of the module of invertible transformations. Classification of integrable systems”, Comm. Math. Phys., 115 (1988), 1–19 | DOI | MR

[13] Rogers C., Schief W. K., Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002 | DOI | MR | Zbl

[14] Shabat A. B., Yamilov R. I., “Symmetries of nonlinear lattices”, Leningrad Math. J., 2 (1991), 377–400 | MR | Zbl

[15] Tremblay S., Grammaticos B., Ramani A., “Integrable lattice equations and their growth properties”, Phys. Lett. A, 278 (2001), 319–324, arXiv: 0709.3095 | DOI | MR | Zbl

[16] Weiss J., “The Painlevé property for partial differential equations. II Bäcklund transformation, Lax pairs, and the Schwarzian derivative”, J. Math. Phys., 24 (1983), 1405–1413 | DOI | MR | Zbl

[17] Yamilov R., “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39 (2006), R541–R623 | DOI | MR | Zbl