Clean Single-Valued Polylogarithms
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define a variant of real-analytic polylogarithms that are single-valued and that satisfy “clean” functional relations that do not involve any products of lower weight functions. We discuss the basic properties of these functions and, for depths one and two, we present some explicit formulas and results. We also give explicit formulas for the single-valued and clean single-valued version attached to the Nielsen polylogarithms $S_{n,2}(x)$, and we show how the clean single-valued functions give new evaluations of multiple polylogarithms at certain algebraic points.
Keywords: Hopf algebras, Dynkin operator, functional equations, single-valued projection, special values.
Mots-clés : multiple polylogarithms, Nielsen polylogarithms
@article{SIGMA_2021_17_a106,
     author = {Steven Charlton and Claude Duhr and Herbert Gangl},
     title = {Clean {Single-Valued} {Polylogarithms}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a106/}
}
TY  - JOUR
AU  - Steven Charlton
AU  - Claude Duhr
AU  - Herbert Gangl
TI  - Clean Single-Valued Polylogarithms
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a106/
LA  - en
ID  - SIGMA_2021_17_a106
ER  - 
%0 Journal Article
%A Steven Charlton
%A Claude Duhr
%A Herbert Gangl
%T Clean Single-Valued Polylogarithms
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a106/
%G en
%F SIGMA_2021_17_a106
Steven Charlton; Claude Duhr; Herbert Gangl. Clean Single-Valued Polylogarithms. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a106/

[1] Abel N. H., {ØE}uvres complètes, v. I, Éditions Jacques Gabay, Sceaux, 1992 (Reprint of the second (1881) edition) ; second edition, 1881 | MR | Zbl

[2] Ablinger J., Blümlein J., Round M., Schneider C., “Numerical implementation of harmonic polylogarithms to weight $w=8$”, Comput. Phys. Comm., 240 (2019), 189–201, arXiv: 1809.07084 | DOI

[3] Ablinger J., Blümlein J., Schneider C., “Harmonic sums and polylogarithms generated by cyclotomic polynomials”, J. Math. Phys., 52 (2011), 102301, 52 pp., arXiv: 1105.6063 | DOI | MR | Zbl

[4] Ablinger J., Blümlein J., Schneider C., “Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms”, J. Math. Phys., 54 (2013), 082301, 74 pp., arXiv: 1302.0378 | DOI | MR | Zbl

[5] Bloch S. J., Higher regulators, algebraic $K$-theory, and zeta functions of elliptic curves, CRM Monograph Series, 11, Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl

[6] Borwein D., Borwein J. M., Bradley D. M., “Parametric Euler sum identities”, J. Math. Anal. Appl., 316 (2006), 328–338, arXiv: math.CA/0505058 | DOI | MR | Zbl

[7] Brown F., “Polylogarithmes multiples uniformes en une variable”, C. R. Math. Acad. Sci. Paris, 338 (2004), 527–532 | DOI | MR | Zbl

[8] Brown F., Single-valued hyperlogarithms and unipotent differential equations, , 2004 http://www.ihes.fr/b̃rown/RHpaper5.pdf

[9] Brown F., “Mixed Tate motives over $\mathbb Z$”, Ann. of Math., 175 (2012), 949–976, arXiv: 1102.1312 | DOI | MR | Zbl

[10] Brown F., “On the decomposition of motivic multiple zeta values”, Galois–Teichmüller Theory and Arithmetic Geometry, Adv. Stud. Pure Math., 63, Math. Soc. Japan, Tokyo, 2012, 31–58, arXiv: 1102.1310 | DOI | MR | Zbl

[11] Brown F., “Single-valued motivic periods and multiple zeta values”, Forum Math. Sigma, 2 (2014), e25, 37 pp., arXiv: 1309.5309 | DOI | MR | Zbl

[12] Brown F., “Notes on motivic periods”, Commun. Number Theory Phys., 11 (2017), 557–655, arXiv: 1512.06410 | DOI | MR | Zbl

[13] Charlton S., Identities arising from coproducts on multiple zeta values and multiple polylogarithms, Ph.D. Thesis, University of Durham, 2016 http://etheses.dur.ac.uk/11834/

[14] Charlton S., Gangl H., Radchenko D., Explicit formulas for Grassmannian polylogarithms, arXiv: 1909.13869

[15] Charlton S., Gangl H., Radchenko D., “On functional equations for Nielsen polylogarithms”, Commun. Number Theory Phys., 15 (2021), 363–454, arXiv: 1908.04770 | DOI | MR | Zbl

[16] Chen K. T., “Iterated path integrals”, Bull. Amer. Math. Soc., 83 (1977), 831–879 | DOI | MR | Zbl

[17] de Jeu R., Describing all multivariable functional equations of dilogarithms, arXiv: 2007.11014

[18] Del Duca V., Druc S., Drummond J., Duhr C., Dulat F., Marzucca R., Papathanasiou G., Verbeek B., “Multi-Regge kinematics and the moduli space of Riemann spheres with marked points”, J. High Energy Phys., 2016:8 (2016), 152, 103 pp., arXiv: 1606.08807 | DOI | MR

[19] Deligne P., “Le groupe fondamental de la droite projective moins trois points, in Galois Groups over $Q$” (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ., 16, Springer, New York, 1989, 79–297 | DOI | MR

[20] Duhr C., “Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes”, J. High Energy Phys., 2012:8 (2012), 043, 46 pp., arXiv: 1203.0454 | DOI | MR

[21] Duhr C., “Scattering amplitudes, Feynman integrals and multiple polylogarithms”, Journeys Through the Precision Frontier: Amplitudes for Colliders (Boulder, Colorado, June 2–27, 2014), World Scientific, 2015, 419–476, arXiv: 1411.7538 | DOI | MR

[22] Duhr C., Dulat F., “PolyLogTools – polylogs for the masses”, J. High Energy Phys., 2019:8 (2019), 135, 56 pp., arXiv: 1904.07279 | DOI | MR

[23] Duhr C., Gangl H., Rhodes J. R., “From polygons and symbols to polylogarithmic functions”, J. High Energy Phys., 2012:8 (2012), 075, 78 pp., arXiv: 1110.0458 | DOI | MR

[24] Gangl H., “Families of functional equations for polylogarithms”, Algebraic $K$-Theory (Poznań, 1995), Contemp. Math., 199, Amer. Math. Soc., Providence, RI, 1996, 83–105 | DOI | MR | Zbl

[25] Gangl H., “Some computations in weight 4 motivic complexes”, Regulators in Analysis, Geometry and number Theory, Progr. Math., 171, Birkhäuser Boston, Boston, MA, 2000, 117–125 | DOI | MR | Zbl

[26] Gangl H., “Functional equations for higher logarithms”, Selecta Math. (N.S.), 9 (2003), 361–377, arXiv: math.KT/0207222 | DOI | MR | Zbl

[27] Gangl H., Multiple polylogarithms in weight 4, arXiv: 1609.05557

[28] Gehrmann T., Remiddi E., “Numerical evaluation of harmonic polylogarithms”, Comput. Phys. Comm., 141 (2001), 296–312, arXiv: hep-ph/0107173 | DOI | MR | Zbl

[29] Gehrmann T., Remiddi E., “Two loop master integrals for $\gamma^*\to 3$ jets: the planar topologies”, Nuclear Phys. B, 601 (2001), 248–286, arXiv: hep-ph/0008287 | DOI

[30] Gehrmann T., Remiddi E., “Numerical evaluation of two-dimensional harmonic polylogarithms”, Comput. Phys. Comm., 144 (2002), 200–223, arXiv: hep-ph/0111255 | DOI | MR | Zbl

[31] Golden J., Goncharov A. B., Spradlin M., Vergu C., Volovich A., “Motivic amplitudes and cluster coordinates”, J. High Energy Phys., 2014:1 (2014), 091, 56 pp., arXiv: 1305.1617 | DOI

[32] Goncharov A. B., “Geometry of configurations, polylogarithms, and motivic cohomology”, Adv. Math., 114 (1995), 197–318 | DOI | MR | Zbl

[33] Goncharov A. B., “Multiple polylogarithms, cyclotomy and modular complexes”, Math. Res. Lett., 5 (1998), 497–516, arXiv: 1105.2076 | DOI | MR | Zbl

[34] Goncharov A. B., Multiple polylogarithms and mixed Tate motives, arXiv: math.AG/0103059

[35] Goncharov A. B., “Galois symmetries of fundamental groupoids and noncommutative geometry”, Duke Math. J., 128 (2005), 209–284, arXiv: math.AG/0208144 | DOI | MR | Zbl

[36] Goncharov A. B., “Exponential complexes, period morphisms, and characteristic classes”, Ann. Fac. Sci. Toulouse Math. (6), 25 (2016), 619–681, arXiv: 1510.07270 | DOI | MR | Zbl

[37] Goncharov A. B., Rudenko D., Motivic correlators, cluster varieties, and Zagier's conjecture on $\zeta_F(4)$, arXiv: 1803.08585

[38] Grothendieck A., “On the de Rham cohomology of algebraic varieties”, Inst. Hautes Études Sci. Publ. Math., 29 (1966), 95–103 | DOI | MR | Zbl

[39] Kellerhals R., “Volumes in hyperbolic $5$-space”, Geom. Funct. Anal., 5 (1995), 640–667 | DOI | MR | Zbl

[40] Kreimer D., Renormalization renormalization group, Lecture Notes by Lutz Klaczynski, 2013 https://www2.mathematik.hu-berlin.de/k̃reimer/wp-content/uploads/SkriptRGE.pdf

[41] Kummer E. E., “Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen”, J. Reine Angew. Math., 21 (1840), 74–90 | DOI | MR | Zbl

[42] Kummer E. E., “Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen (Fortsetzung)”, J. Reine Angew. Math., 21 (1840), 193–225 | DOI | MR | Zbl

[43] Kummer E. E., “Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen (Fortsetzung)”, J. Reine Angew. Math., 21 (1840), 328–371 | DOI | MR

[44] Lappo-Danilevsky J. A., “Théorie algorithmique des corps de Riemann”, Mat. Sb., 34 (1927), 113–148

[45] Leibniz G. W., Mathematische Schriften, Herausgegeben von C. I. Gerhardt, v. III/1, Briefwechsel zwischen Leibniz, Jacob Bernoulli, Johann Bernoulli und Nicolaus Bernoulli, Georg Olms Verlagsbuchhandlung, Hildesheim, 1962 | MR

[46] Lewin L., Polylogarithms and associated functions, North-Holland Publishing Co., New York – Amsterdam, 1981 | MR | Zbl

[47] Lobatschewsky N., “Géométrie imaginaire”, J. Reine Angew. Math., 17 (1837), 295–320 | DOI | MR | Zbl

[48] Manchon D., Hopf algebras, from basics to applications to renormalization, arXiv: math.QA/0408405

[49] Panzer E., “The parity theorem for multiple polylogarithms”, J. Number Theory, 172 (2017), 93–113, arXiv: 1512.04482 | DOI | MR | Zbl

[50] Patras F., “Dynkin operators and renormalization group actions in pQFT”, Vertex Operator Algebras and Related Areas, Contemp. Math., 497, Amer. Math. Soc., Providence, RI, 2009, 169–184, arXiv: 0811.4087 | DOI | MR | Zbl

[51] Patras F., Reutenauer C., “On Dynkin and Klyachko idempotents in graded bialgebras”, Adv. in Appl. Math., 28 (2002), 560–579 | DOI | MR | Zbl

[52] Radchenko D., Higher cross-ratios and geometric functional equations for polylogarithms, Ph.D. Thesis, Bonn University, 2016 https://hdl.handle.net/20.500.11811/6872

[53] Ramakrishnan D., “Analogs of the Bloch–Wigner function for higher polylogarithms”, Applications of Algebraic $K$-Theory to Algebraic Geometry and Number Theory (Boulder, Colo., 1983), v. I, II, Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986, 371–376 | DOI | MR

[54] Remiddi E., Vermaseren J. A. M., “Harmonic polylogarithms”, Internat. J. Modern Phys. A, 15 (2000), 725–754, arXiv: hep-ph/9905237 | DOI | MR | Zbl

[55] Reutenauer C., Free Lie algebras, London Mathematical Society Monographs. New Series, 7, The Clarendon Press, Oxford University Press, New York, 1993 | MR

[56] Spradlin M., Volovich A., “Symbols of one-loop integrals from mixed Tate motives”, J. High Energy Phys., 2011:11 (2011), 084, 12 pp., arXiv: 1105.2024 | DOI | MR

[57] 't Hooft G., Veltman M., “Regularization and renormalization of gauge fields”, Nuclear Phys. B, 44 (1972), 189–213 | DOI | MR

[58] Vollinga J., Weinzierl S., “Numerical evaluation of multiple polylogarithms”, Comput. Phys. Comm., 167 (2005), 177–194, arXiv: hep-ph/0410259 | DOI | MR | Zbl

[59] Wojtkowiak Z., “A construction of analogs of the Bloch–Wigner function”, Math. Scand., 65 (1989), 140–142 | DOI | MR | Zbl

[60] Wojtkowiak Z., “The basic structure of polylogarithmic functional equations”, Structural Properties of Polylogarithms, Math. Surveys Monogr., 37, Amer. Math. Soc., Providence, RI, 1991, 205–231 | DOI | MR

[61] Wojtkowiak Z., “Functional equations of iterated integrals with regular singularities”, Nagoya Math. J., 142 (1996), 145–159 | DOI | MR | Zbl

[62] Zagier D., “Polylogarithms, Dedekind zeta functions and the algebraic $K$-theory of fields”, Arithmetic Algebraic Geometry (Texel, 1989), Progr. Math., 89, Birkhäuser Boston, Boston, MA, 1991, 391–430 | DOI | MR

[63] Zhao J., Multiple zeta functions, multiple polylogarithms and their special values, Series on Number Theory and its Applications, 12, World Sci. Publ. Co. Pte. Ltd., Hackensack, NJ, 2016 | DOI | MR | Zbl