Mots-clés : multiple polylogarithms, Nielsen polylogarithms
@article{SIGMA_2021_17_a106,
author = {Steven Charlton and Claude Duhr and Herbert Gangl},
title = {Clean {Single-Valued} {Polylogarithms}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a106/}
}
Steven Charlton; Claude Duhr; Herbert Gangl. Clean Single-Valued Polylogarithms. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a106/
[1] Abel N. H., {ØE}uvres complètes, v. I, Éditions Jacques Gabay, Sceaux, 1992 (Reprint of the second (1881) edition) ; second edition, 1881 | MR | Zbl
[2] Ablinger J., Blümlein J., Round M., Schneider C., “Numerical implementation of harmonic polylogarithms to weight $w=8$”, Comput. Phys. Comm., 240 (2019), 189–201, arXiv: 1809.07084 | DOI
[3] Ablinger J., Blümlein J., Schneider C., “Harmonic sums and polylogarithms generated by cyclotomic polynomials”, J. Math. Phys., 52 (2011), 102301, 52 pp., arXiv: 1105.6063 | DOI | MR | Zbl
[4] Ablinger J., Blümlein J., Schneider C., “Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms”, J. Math. Phys., 54 (2013), 082301, 74 pp., arXiv: 1302.0378 | DOI | MR | Zbl
[5] Bloch S. J., Higher regulators, algebraic $K$-theory, and zeta functions of elliptic curves, CRM Monograph Series, 11, Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl
[6] Borwein D., Borwein J. M., Bradley D. M., “Parametric Euler sum identities”, J. Math. Anal. Appl., 316 (2006), 328–338, arXiv: math.CA/0505058 | DOI | MR | Zbl
[7] Brown F., “Polylogarithmes multiples uniformes en une variable”, C. R. Math. Acad. Sci. Paris, 338 (2004), 527–532 | DOI | MR | Zbl
[8] Brown F., Single-valued hyperlogarithms and unipotent differential equations, , 2004 http://www.ihes.fr/b̃rown/RHpaper5.pdf
[9] Brown F., “Mixed Tate motives over $\mathbb Z$”, Ann. of Math., 175 (2012), 949–976, arXiv: 1102.1312 | DOI | MR | Zbl
[10] Brown F., “On the decomposition of motivic multiple zeta values”, Galois–Teichmüller Theory and Arithmetic Geometry, Adv. Stud. Pure Math., 63, Math. Soc. Japan, Tokyo, 2012, 31–58, arXiv: 1102.1310 | DOI | MR | Zbl
[11] Brown F., “Single-valued motivic periods and multiple zeta values”, Forum Math. Sigma, 2 (2014), e25, 37 pp., arXiv: 1309.5309 | DOI | MR | Zbl
[12] Brown F., “Notes on motivic periods”, Commun. Number Theory Phys., 11 (2017), 557–655, arXiv: 1512.06410 | DOI | MR | Zbl
[13] Charlton S., Identities arising from coproducts on multiple zeta values and multiple polylogarithms, Ph.D. Thesis, University of Durham, 2016 http://etheses.dur.ac.uk/11834/
[14] Charlton S., Gangl H., Radchenko D., Explicit formulas for Grassmannian polylogarithms, arXiv: 1909.13869
[15] Charlton S., Gangl H., Radchenko D., “On functional equations for Nielsen polylogarithms”, Commun. Number Theory Phys., 15 (2021), 363–454, arXiv: 1908.04770 | DOI | MR | Zbl
[16] Chen K. T., “Iterated path integrals”, Bull. Amer. Math. Soc., 83 (1977), 831–879 | DOI | MR | Zbl
[17] de Jeu R., Describing all multivariable functional equations of dilogarithms, arXiv: 2007.11014
[18] Del Duca V., Druc S., Drummond J., Duhr C., Dulat F., Marzucca R., Papathanasiou G., Verbeek B., “Multi-Regge kinematics and the moduli space of Riemann spheres with marked points”, J. High Energy Phys., 2016:8 (2016), 152, 103 pp., arXiv: 1606.08807 | DOI | MR
[19] Deligne P., “Le groupe fondamental de la droite projective moins trois points, in Galois Groups over $Q$” (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ., 16, Springer, New York, 1989, 79–297 | DOI | MR
[20] Duhr C., “Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes”, J. High Energy Phys., 2012:8 (2012), 043, 46 pp., arXiv: 1203.0454 | DOI | MR
[21] Duhr C., “Scattering amplitudes, Feynman integrals and multiple polylogarithms”, Journeys Through the Precision Frontier: Amplitudes for Colliders (Boulder, Colorado, June 2–27, 2014), World Scientific, 2015, 419–476, arXiv: 1411.7538 | DOI | MR
[22] Duhr C., Dulat F., “PolyLogTools – polylogs for the masses”, J. High Energy Phys., 2019:8 (2019), 135, 56 pp., arXiv: 1904.07279 | DOI | MR
[23] Duhr C., Gangl H., Rhodes J. R., “From polygons and symbols to polylogarithmic functions”, J. High Energy Phys., 2012:8 (2012), 075, 78 pp., arXiv: 1110.0458 | DOI | MR
[24] Gangl H., “Families of functional equations for polylogarithms”, Algebraic $K$-Theory (Poznań, 1995), Contemp. Math., 199, Amer. Math. Soc., Providence, RI, 1996, 83–105 | DOI | MR | Zbl
[25] Gangl H., “Some computations in weight 4 motivic complexes”, Regulators in Analysis, Geometry and number Theory, Progr. Math., 171, Birkhäuser Boston, Boston, MA, 2000, 117–125 | DOI | MR | Zbl
[26] Gangl H., “Functional equations for higher logarithms”, Selecta Math. (N.S.), 9 (2003), 361–377, arXiv: math.KT/0207222 | DOI | MR | Zbl
[27] Gangl H., Multiple polylogarithms in weight 4, arXiv: 1609.05557
[28] Gehrmann T., Remiddi E., “Numerical evaluation of harmonic polylogarithms”, Comput. Phys. Comm., 141 (2001), 296–312, arXiv: hep-ph/0107173 | DOI | MR | Zbl
[29] Gehrmann T., Remiddi E., “Two loop master integrals for $\gamma^*\to 3$ jets: the planar topologies”, Nuclear Phys. B, 601 (2001), 248–286, arXiv: hep-ph/0008287 | DOI
[30] Gehrmann T., Remiddi E., “Numerical evaluation of two-dimensional harmonic polylogarithms”, Comput. Phys. Comm., 144 (2002), 200–223, arXiv: hep-ph/0111255 | DOI | MR | Zbl
[31] Golden J., Goncharov A. B., Spradlin M., Vergu C., Volovich A., “Motivic amplitudes and cluster coordinates”, J. High Energy Phys., 2014:1 (2014), 091, 56 pp., arXiv: 1305.1617 | DOI
[32] Goncharov A. B., “Geometry of configurations, polylogarithms, and motivic cohomology”, Adv. Math., 114 (1995), 197–318 | DOI | MR | Zbl
[33] Goncharov A. B., “Multiple polylogarithms, cyclotomy and modular complexes”, Math. Res. Lett., 5 (1998), 497–516, arXiv: 1105.2076 | DOI | MR | Zbl
[34] Goncharov A. B., Multiple polylogarithms and mixed Tate motives, arXiv: math.AG/0103059
[35] Goncharov A. B., “Galois symmetries of fundamental groupoids and noncommutative geometry”, Duke Math. J., 128 (2005), 209–284, arXiv: math.AG/0208144 | DOI | MR | Zbl
[36] Goncharov A. B., “Exponential complexes, period morphisms, and characteristic classes”, Ann. Fac. Sci. Toulouse Math. (6), 25 (2016), 619–681, arXiv: 1510.07270 | DOI | MR | Zbl
[37] Goncharov A. B., Rudenko D., Motivic correlators, cluster varieties, and Zagier's conjecture on $\zeta_F(4)$, arXiv: 1803.08585
[38] Grothendieck A., “On the de Rham cohomology of algebraic varieties”, Inst. Hautes Études Sci. Publ. Math., 29 (1966), 95–103 | DOI | MR | Zbl
[39] Kellerhals R., “Volumes in hyperbolic $5$-space”, Geom. Funct. Anal., 5 (1995), 640–667 | DOI | MR | Zbl
[40] Kreimer D., Renormalization renormalization group, Lecture Notes by Lutz Klaczynski, 2013 https://www2.mathematik.hu-berlin.de/k̃reimer/wp-content/uploads/SkriptRGE.pdf
[41] Kummer E. E., “Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen”, J. Reine Angew. Math., 21 (1840), 74–90 | DOI | MR | Zbl
[42] Kummer E. E., “Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen (Fortsetzung)”, J. Reine Angew. Math., 21 (1840), 193–225 | DOI | MR | Zbl
[43] Kummer E. E., “Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen (Fortsetzung)”, J. Reine Angew. Math., 21 (1840), 328–371 | DOI | MR
[44] Lappo-Danilevsky J. A., “Théorie algorithmique des corps de Riemann”, Mat. Sb., 34 (1927), 113–148
[45] Leibniz G. W., Mathematische Schriften, Herausgegeben von C. I. Gerhardt, v. III/1, Briefwechsel zwischen Leibniz, Jacob Bernoulli, Johann Bernoulli und Nicolaus Bernoulli, Georg Olms Verlagsbuchhandlung, Hildesheim, 1962 | MR
[46] Lewin L., Polylogarithms and associated functions, North-Holland Publishing Co., New York – Amsterdam, 1981 | MR | Zbl
[47] Lobatschewsky N., “Géométrie imaginaire”, J. Reine Angew. Math., 17 (1837), 295–320 | DOI | MR | Zbl
[48] Manchon D., Hopf algebras, from basics to applications to renormalization, arXiv: math.QA/0408405
[49] Panzer E., “The parity theorem for multiple polylogarithms”, J. Number Theory, 172 (2017), 93–113, arXiv: 1512.04482 | DOI | MR | Zbl
[50] Patras F., “Dynkin operators and renormalization group actions in pQFT”, Vertex Operator Algebras and Related Areas, Contemp. Math., 497, Amer. Math. Soc., Providence, RI, 2009, 169–184, arXiv: 0811.4087 | DOI | MR | Zbl
[51] Patras F., Reutenauer C., “On Dynkin and Klyachko idempotents in graded bialgebras”, Adv. in Appl. Math., 28 (2002), 560–579 | DOI | MR | Zbl
[52] Radchenko D., Higher cross-ratios and geometric functional equations for polylogarithms, Ph.D. Thesis, Bonn University, 2016 https://hdl.handle.net/20.500.11811/6872
[53] Ramakrishnan D., “Analogs of the Bloch–Wigner function for higher polylogarithms”, Applications of Algebraic $K$-Theory to Algebraic Geometry and Number Theory (Boulder, Colo., 1983), v. I, II, Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986, 371–376 | DOI | MR
[54] Remiddi E., Vermaseren J. A. M., “Harmonic polylogarithms”, Internat. J. Modern Phys. A, 15 (2000), 725–754, arXiv: hep-ph/9905237 | DOI | MR | Zbl
[55] Reutenauer C., Free Lie algebras, London Mathematical Society Monographs. New Series, 7, The Clarendon Press, Oxford University Press, New York, 1993 | MR
[56] Spradlin M., Volovich A., “Symbols of one-loop integrals from mixed Tate motives”, J. High Energy Phys., 2011:11 (2011), 084, 12 pp., arXiv: 1105.2024 | DOI | MR
[57] 't Hooft G., Veltman M., “Regularization and renormalization of gauge fields”, Nuclear Phys. B, 44 (1972), 189–213 | DOI | MR
[58] Vollinga J., Weinzierl S., “Numerical evaluation of multiple polylogarithms”, Comput. Phys. Comm., 167 (2005), 177–194, arXiv: hep-ph/0410259 | DOI | MR | Zbl
[59] Wojtkowiak Z., “A construction of analogs of the Bloch–Wigner function”, Math. Scand., 65 (1989), 140–142 | DOI | MR | Zbl
[60] Wojtkowiak Z., “The basic structure of polylogarithmic functional equations”, Structural Properties of Polylogarithms, Math. Surveys Monogr., 37, Amer. Math. Soc., Providence, RI, 1991, 205–231 | DOI | MR
[61] Wojtkowiak Z., “Functional equations of iterated integrals with regular singularities”, Nagoya Math. J., 142 (1996), 145–159 | DOI | MR | Zbl
[62] Zagier D., “Polylogarithms, Dedekind zeta functions and the algebraic $K$-theory of fields”, Arithmetic Algebraic Geometry (Texel, 1989), Progr. Math., 89, Birkhäuser Boston, Boston, MA, 1991, 391–430 | DOI | MR
[63] Zhao J., Multiple zeta functions, multiple polylogarithms and their special values, Series on Number Theory and its Applications, 12, World Sci. Publ. Co. Pte. Ltd., Hackensack, NJ, 2016 | DOI | MR | Zbl