@article{SIGMA_2021_17_a105,
author = {Nikolay Bogolyubov and Cyril Malyshev},
title = {How to {Draw} a {Correlation} {Function}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a105/}
}
Nikolay Bogolyubov; Cyril Malyshev. How to Draw a Correlation Function. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a105/
[1] Barnes E. W., “The theory of the $G$-function”, Quart. J. Math., 31 (1900), 264–314
[2] Bogoliubov N. M., “$XX0$ Heisenberg chain and random walks”, J. Math. Sci., 138 (2006), 5636–5643 | DOI
[3] Bogoliubov N. M., Malyshev C., “Correlation functions of $XX0$ Heisenberg chain, $q$-binomial determinants, and random walks”, Nuclear Phys. B, 879 (2014), 268–291, arXiv: 1401.7624 | DOI
[4] Bogoliubov N. M., Malyshev C., “Integrable models and combinatorics”, Russian Math. Surveys, 70 (2015), 789–856 | DOI
[5] Bogoliubov N. M., Malyshev C., “The phase model and the norm-trace generating function of plane partitions”, J. Stat. Mech. Theory Exp., 2018 (2018), 083101, 13 pp. | DOI
[6] Bogoliubov N. M., Malyshev C., “Heisenberg $XX0$ chain and random walks on a ring”, Zap. Nauchn. Sem. POMI, 494, 2020, 48–63
[7] Borodin A., Gorin V., Rains E. M., “$q$-distributions on boxed plane partitions”, Selecta Math. (N.S.), 16 (2010), 731–789, arXiv: 0905.0679 | DOI
[8] Bressoud D. M., Proofs and confirmations. The story of the alternating sign matrix conjecture, MAA Spectrum, Cambridge University Press, Cambridge, 1999 | DOI
[9] Bufetov A., Gorin V., “Fluctuations of particle systems determined by Schur generating functions”, Adv. Math., 338 (2018), 702–781, arXiv: 1604.01110 | DOI
[10] Carlitz L., “Some determinants of $q$-binomial coefficients”, J. Reine Angew. Math., 226 (1967), 216–220 | DOI
[11] Colomo F., Izergin A. G., Korepin V. E., Tognetti V., “Correlators in the Heisenberg $XX0$ chain as Fredholm determinants”, Phys. Lett. A, 169 (1992), 243–247 | DOI
[12] Dingle R. B., Asymptotic expansions: their derivation and interpretation, Academic Press, London – New York, 1973
[13] Faddeev L. D., “Quantum completely integrable models in field theory”, Mathematical Physics Reviews, v. 1, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., 1, Harwood Academic, Chur, 1980, 107–155
[14] Faddeev L. D., Takhtadzhyan L. A., “Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model”, J. Sov. Math., 24 (1984), 241–267 | DOI
[15] Faddeev L. D., Takhtajan L. A., “What is the spin of a spin wave?”, Phys. Lett. A, 85 (1981), 375–377 | DOI
[16] Fisher M. E., “Walks, walls, wetting, and melting”, J. Stat. Phys., 34 (1984), 667–729 | DOI
[17] Forrester P. J., “Exact solution of the lock step model of vicious walkers”, J. Phys. A: Math. Gen., 23 (1990), 1259–1273 | DOI
[18] Forrester P. J., “Exact results for vicious walker models of domain walls”, J. Phys. A: Math. Gen., 24 (1991), 203–218 | DOI
[19] Franchini F., Its A. R., Korepin V. E., Takhtajan L. A., “Spectrum of the density matrix of a large block of spins of the $XY$ model in one dimension”, Quantum Inf. Process., 10 (2011), 325–341 | DOI
[20] Fulton W., Young tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997 | DOI
[21] Gessel I., Viennot G., “Binomial determinants, paths, and hook length formulae”, Adv. Math., 58 (1985), 300–321 | DOI
[22] Gross D. J., Witten E., “Possible third-order phase transition in the large-$N$ lattice gauge theory”, Phys. Rev. D, 21 (1980), 446–453 | DOI
[23] Guttmann A. J., Owczarek A. L., Viennot X. G., “Vicious walkers and Young tableaux. I Without walls”, J. Phys. A: Math. Gen., 31 (1998), 8123–8135 | DOI
[24] Karlin S., McGregor J., “Coincidence probabilities”, Pacific J. Math., 9 (1959), 1141–1164 | DOI
[25] Karlin S., McGregor J., “Coincidence properties of birth and death processes”, Pacific J. Math., 9 (1959), 1109–1140 | DOI
[26] Katori M., Tanemura H., “Nonintersecting paths, noncolliding diffusion processes and representation theory”, RIMS Kōkyūroku, 1438 (2005), 83–102, arXiv: math.PR/0501218
[27] Katori M., Tanemura H., “Noncolliding Brownian motion and determinantal processes”, J. Stat. Phys., 129 (2007), 1233–1277, arXiv: 0705.2460 | DOI
[28] Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997 | DOI
[29] Krattenthaler C., Guttmann A. J., Viennot X. G., “Vicious walkers, friendly walkers and Young tableaux. II With a wall”, J. Phys. A: Math. Gen., 33 (2000), 8835–8866, arXiv: cond-mat/0006367 | DOI
[30] Lieb E., Schultz T., Mattis D., “Two soluble models of an antiferromagnetic chain”, Ann. Physics, 16 (1961), 407–466 | DOI
[31] Lindström B., “On the vector representations of induced matroids”, Bull. London Math. Soc., 5 (1973), 85–90 | DOI
[32] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995
[33] Mehta M. L., Random matrices, 2nd ed., Academic Press, Inc., Boston, MA, 1991
[34] Okounkov A., Reshetikhin N., “Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram”, J. Amer. Math. Soc., 16 (2003), 581–603, arXiv: math.CO/0107056 | DOI
[35] Pérez-García D., Tierz M., “Mapping between the Heisenberg $XX$ spin chain and low-energy QCD”, Phys. Rev. X, 4 (2014), 021050, 12 pp. | DOI
[36] Saeedian M., Zahabi A., “Phase structure of $XX0$ spin chain and nonintersecting Brownian motion”, J. Stat. Mech. Theory Exp., 2018 (2018), 013104, 36 pp., arXiv: 1612.03463 | DOI
[37] Saeedian M., Zahabi A., “Exact solvability and asymptotic aspects of generalized $XX0$ spin chains”, Phys. A, 549 (2020), 124406, 19 pp., arXiv: 1709.02760 | DOI
[38] Santilli L., Tierz M., “Phase transition in complex-time Loschmidt echo of short and long range spin chain”, J. Stat. Mech. Theory Exp., 2020 (2020), 063102, 39 pp., arXiv: 1902.06649 | DOI
[39] Sklyanin E. K., Takhtajan L. A., Faddeev L. D., “Quantum inverse problem method. I”, Theoret. and Math. Phys., 40 (1979), 688–706 | DOI
[40] Stanley R. P., Enumerative combinatorics, v. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 1997 | DOI
[41] Stanley R. P., Enumerative combinatorics, v. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999 | DOI
[42] Stembridge J. R., “Multiplicity-free products of Schur functions”, Ann. Comb., 5 (2001), 113–121 | DOI
[43] Takhtajan L. A., “The picture of low-lying excitations in the isotropic Heisenberg chain of arbitrary spins”, Phys. Lett. A, 87 (1982), 479–482 | DOI
[44] Takhtajan L. A., Faddeev L. D., “The quantum method for the inverse problem and the $XYZ$ Heisenberg model”, Russian Math. Surveys, 34:5 (1979), 11–68 | DOI
[45] van Willigenburg S., “Equality of Schur and skew Schur functions”, Ann. Comb., 9 (2005), 355–362, arXiv: math.CO/0410044 | DOI
[46] Vershik A. M., “Statistical mechanics of combinatorial partitions, and their limit shapes”, Funct. Anal. Appl., 30 (1996), 90–105 | DOI