A Sharp Lieb–Thirring Inequality for Functional Difference Operators
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove sharp Lieb–Thirring type inequalities for the eigenvalues of a class of one-dimensional functional difference operators associated to mirror curves. We furthermore prove that the bottom of the essential spectrum of these operators is a resonance state.
Keywords: Lieb–Thirring inequality, functional difference operator, semigroup property.
@article{SIGMA_2021_17_a104,
     author = {Ari Laptev and Lukas Schimmer},
     title = {A {Sharp} {Lieb{\textendash}Thirring} {Inequality} for {Functional} {Difference} {Operators}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a104/}
}
TY  - JOUR
AU  - Ari Laptev
AU  - Lukas Schimmer
TI  - A Sharp Lieb–Thirring Inequality for Functional Difference Operators
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a104/
LA  - en
ID  - SIGMA_2021_17_a104
ER  - 
%0 Journal Article
%A Ari Laptev
%A Lukas Schimmer
%T A Sharp Lieb–Thirring Inequality for Functional Difference Operators
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a104/
%G en
%F SIGMA_2021_17_a104
Ari Laptev; Lukas Schimmer. A Sharp Lieb–Thirring Inequality for Functional Difference Operators. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a104/

[1] Faddeev L. D., Takhtajan L. A., “Liouville model on the lattice”, Field Theory, Quantum Gravity and Strings (Meudon/Paris, 1984/1985), Lecture Notes in Phys., 246, Springer, Berlin, 1986, 166–179 | DOI

[2] Frank R. L., Laptev A., Weidl T., Schrödinger operators: eigenvalues and Lieb–Thirring inequalities, in preparation

[3] Gohberg I. C., Kreĭn M.G., Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, 18, Amer. Math. Soc., Providence, R.I., 1969

[4] Grassi A., Hatsuda Y., Mariño M., “Topological strings from quantum mechanics”, Ann. Henri Poincaré, 17 (2016), 3177–3235, arXiv: 1410.3382 | DOI

[5] Gu J., Klemm A., Mariño M., Reuter J., “Exact solutions to quantum spectral curves by topological string theory”, J. High Energy Phys., 2015:10 (2015), 025, 69 pp., arXiv: 1506.09176 | DOI

[6] Hundertmark D., Laptev A., Weidl T., “New bounds on the Lieb–Thirring constants”, Invent. Math., 140 (2000), 693–704, arXiv: math-ph/9906013 | DOI

[7] Hundertmark D., Lieb E. H., Thomas L. E., “A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator”, Adv. Theor. Math. Phys., 2 (1998), 719–731, arXiv: math-ph/9806012 | DOI

[8] Hundertmark D., Simon B., “Lieb–Thirring inequalities for Jacobi matrices”, J. Approx. Theory, 118 (2002), 106–130, arXiv: math-ph/0112027 | DOI

[9] Kashaev R., “The quantum dilogarithm and Dehn twists in quantum Teichmüller theory”, Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory (Kiev, 2000), NATO Sci. Ser. II Math. Phys. Chem., 35 | DOI

[10] Kashaev R., Mariño M., “Operators from mirror curves and the quantum dilogarithm”, Comm. Math. Phys., 346 (2016), 967–994, arXiv: 1501.01014 | DOI

[11] Kashaev R., Mariño M., Zakany S., “Matrix models from operators and topological strings, 2”, Ann. Henri Poincaré, 17 (2016), 2741–2781, arXiv: 1505.02243 | DOI

[12] Laptev A., Loss M., Schimmer L., On a conjecture by Hundertmark and Simon, arXiv: 2012.13793

[13] Laptev A., Schimmer L., Takhtajan L. A., “Weyl type asymptotics and bounds for the eigenvalues of functional-difference operators for mirror curves”, Geom. Funct. Anal., 26 (2016), 288–305, arXiv: 1510.00045 | DOI

[14] Laptev A., Schimmer L., Takhtajan L. A., “Weyl asymptotics for perturbed functional difference operators”, J. Math. Phys., 60 (2019), 103505, 10 pp. | DOI

[15] Lieb E. H., Thirring W. E., “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities”, Studies in Mathematical Physics, Princeton University Press, Princeton, 1976, 269–303

[16] Takhtajan L. A., “Trace formulas for the modified Mathieu equation”, Partial Differential Equations, Spectral Theory, and Mathematical Physics, eds. P. Exner, R. Frank, F. Gesztesy, H. Holden, T. Weidl, European Mathematical Society, Berlin, 2021, 427–443, arXiv: 2103.00038 | DOI

[17] Takhtajan L. A., Faddeev L. D., “The spectral theory of a functional-difference operator in conformal field theory”, Izv. Math., 79 (2015), 388–410, arXiv: 1408.0307 | DOI