@article{SIGMA_2021_17_a104,
author = {Ari Laptev and Lukas Schimmer},
title = {A {Sharp} {Lieb{\textendash}Thirring} {Inequality} for {Functional} {Difference} {Operators}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a104/}
}
Ari Laptev; Lukas Schimmer. A Sharp Lieb–Thirring Inequality for Functional Difference Operators. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a104/
[1] Faddeev L. D., Takhtajan L. A., “Liouville model on the lattice”, Field Theory, Quantum Gravity and Strings (Meudon/Paris, 1984/1985), Lecture Notes in Phys., 246, Springer, Berlin, 1986, 166–179 | DOI
[2] Frank R. L., Laptev A., Weidl T., Schrödinger operators: eigenvalues and Lieb–Thirring inequalities, in preparation
[3] Gohberg I. C., Kreĭn M.G., Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, 18, Amer. Math. Soc., Providence, R.I., 1969
[4] Grassi A., Hatsuda Y., Mariño M., “Topological strings from quantum mechanics”, Ann. Henri Poincaré, 17 (2016), 3177–3235, arXiv: 1410.3382 | DOI
[5] Gu J., Klemm A., Mariño M., Reuter J., “Exact solutions to quantum spectral curves by topological string theory”, J. High Energy Phys., 2015:10 (2015), 025, 69 pp., arXiv: 1506.09176 | DOI
[6] Hundertmark D., Laptev A., Weidl T., “New bounds on the Lieb–Thirring constants”, Invent. Math., 140 (2000), 693–704, arXiv: math-ph/9906013 | DOI
[7] Hundertmark D., Lieb E. H., Thomas L. E., “A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator”, Adv. Theor. Math. Phys., 2 (1998), 719–731, arXiv: math-ph/9806012 | DOI
[8] Hundertmark D., Simon B., “Lieb–Thirring inequalities for Jacobi matrices”, J. Approx. Theory, 118 (2002), 106–130, arXiv: math-ph/0112027 | DOI
[9] Kashaev R., “The quantum dilogarithm and Dehn twists in quantum Teichmüller theory”, Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory (Kiev, 2000), NATO Sci. Ser. II Math. Phys. Chem., 35 | DOI
[10] Kashaev R., Mariño M., “Operators from mirror curves and the quantum dilogarithm”, Comm. Math. Phys., 346 (2016), 967–994, arXiv: 1501.01014 | DOI
[11] Kashaev R., Mariño M., Zakany S., “Matrix models from operators and topological strings, 2”, Ann. Henri Poincaré, 17 (2016), 2741–2781, arXiv: 1505.02243 | DOI
[12] Laptev A., Loss M., Schimmer L., On a conjecture by Hundertmark and Simon, arXiv: 2012.13793
[13] Laptev A., Schimmer L., Takhtajan L. A., “Weyl type asymptotics and bounds for the eigenvalues of functional-difference operators for mirror curves”, Geom. Funct. Anal., 26 (2016), 288–305, arXiv: 1510.00045 | DOI
[14] Laptev A., Schimmer L., Takhtajan L. A., “Weyl asymptotics for perturbed functional difference operators”, J. Math. Phys., 60 (2019), 103505, 10 pp. | DOI
[15] Lieb E. H., Thirring W. E., “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities”, Studies in Mathematical Physics, Princeton University Press, Princeton, 1976, 269–303
[16] Takhtajan L. A., “Trace formulas for the modified Mathieu equation”, Partial Differential Equations, Spectral Theory, and Mathematical Physics, eds. P. Exner, R. Frank, F. Gesztesy, H. Holden, T. Weidl, European Mathematical Society, Berlin, 2021, 427–443, arXiv: 2103.00038 | DOI
[17] Takhtajan L. A., Faddeev L. D., “The spectral theory of a functional-difference operator in conformal field theory”, Izv. Math., 79 (2015), 388–410, arXiv: 1408.0307 | DOI