Mots-clés : graph complexes, Outer space, motives
@article{SIGMA_2021_17_a102,
author = {Francis Brown},
title = {Invariant {Differential} {Forms} on {Complexes} of {Graphs} and {Feynman} {Integrals}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a102/}
}
Francis Brown. Invariant Differential Forms on Complexes of Graphs and Feynman Integrals. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a102/
[1] Alm J., The Grothendieck–Teichmueller Lie algebra and Brown's dihedral moduli spaces, arXiv: 1805.06684
[2] Baker O., The Jacobian map on Outer space, Ph.D. Thesis, Cornell University, 2011 https://ecommons.cornell.edu/handle/1813/30769
[3] Bar-Natan D., McKay B., Graph cohomology: an overview and some computations http://www.math.toronto.edu/d̃rorbn/papers/GCOC/GCOC.ps
[4] Belkale P., Brosnan P., “Matroids, motives, and a conjecture of Kontsevich”, Duke Math. J., 116 (2003), 147–188 | DOI
[5] Berghoff M., Kreimer D., Graph complexes and Feynman rules, arXiv: 2008.09540
[6] Bloch S., Esnault H., Kreimer D., “On motives associated to graph polynomials”, Comm. Math. Phys., 267 (2006), 181–225, arXiv: math.AG/0510011 | DOI
[7] Bogner C., “MPL – a program for computations with iterated integrals on moduli spaces of curves of genus zero”, Comput. Phys. Comm., 203 (2016), 339–353, arXiv: 1510.04562 | DOI
[8] Borel A., Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4), 7 (1974), 235–272 | DOI
[9] Borinsky M., Graphs, automorphisms and clockworks, in preparation
[10] Borinsky M., Schnetz O., Graphical functions in even dimensions, arXiv: 2105.05015
[11] Borinsky M., Vogtmann K., “The Euler characteristic of ${\rm Out}(F_n)$”, Comment. Math. Helv., 95 (2020), 703–748, arXiv: 1907.03543 | DOI
[12] Brannetti S., Melo M., Viviani F., “On the tropical Torelli map”, Adv. Math., 226 (2011), 2546–2586, arXiv: 0907.3324 | DOI
[13] Broadhurst D. J., Kreimer D., “Knots and numbers in $\phi^4$ theory to $7$ loops and beyond”, Internat. J. Modern Phys. C, 6 (1995), 519–524, arXiv: hep-ph/9504352 | DOI
[14] Brown F., “The massless higher-loop two-point function”, Comm. Math. Phys., 287 (2009), 925–958, arXiv: 0804.1660 | DOI
[15] Brown F., On the periods of some Feynman integrals, arXiv: 0910.0114
[16] Brown F., “Mixed Tate motives over $\mathbb Z$”, Ann. of Math., 175 (2012), 949–976, arXiv: 1102.1312 | DOI
[17] Brown F., “Feynman amplitudes, coaction principle, and cosmic Galois group”, Commun. Number Theory Phys., 11 (2017), 453–556, arXiv: 1512.06409 | DOI
[18] Brown F., “Notes on motivic periods”, Commun. Number Theory Phys., 11 (2017), 557–655, arXiv: 1512.06410 | DOI
[19] Brown F., Doryn D., Framings for graph hypersurfaces, arXiv: 1301.3056
[20] Brown F., Kreimer D., “Angles, scales and parametric renormalization”, Lett. Math. Phys., 103 (2013), 933–1007, arXiv: 1112.1180 | DOI
[21] Brown F., Schnetz O., “A K3 in $\phi^4$”, Duke Math. J., 161 (2012), 1817–1862, arXiv: 1006.4064 | DOI
[22] Bux K.-U., Smillie P., Vogtmann K., “On the bordification of Outer space”, J. Lond. Math. Soc., 98 (2018), 12–34, arXiv: 1709.01296 | DOI
[23] Caporaso L., Viviani F., “Torelli theorem for graphs and tropical curves”, Duke Math. J., 153 (2010), 129–171, arXiv: 0901.1389 | DOI
[24] Cartier P., “A primer of Hopf algebras”, Frontiers in Number Theory, Physics, and Geometry, v. II, Springer, Berlin, 2007, 537–615 | DOI
[25] Chan M., “Combinatorics of the tropical Torelli map”, Algebra Number Theory, 6 (2012), 1133–1169, arXiv: 1012.4539 | DOI
[26] Chan M., Galatius S., Payne S., “Tropical curves, graph complexes, and top weight cohomology of $\mathcal{M}_g$”, J. Amer. Math. Soc., 34 (2021), 565–594, arXiv: 1805.10186 | DOI
[27] Connes A., Kreimer D., “Hopf algebras, renormalization and noncommutative geometry”, Comm. Math. Phys., 199 (1998), 203–242, arXiv: hep-th/9808042 | DOI
[28] Culler M., Vogtmann K., “Moduli of graphs and automorphisms of free groups”, Invent. Math., 84 (1986), 91–119 | DOI
[29] Deligne P., “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math., 40 (1971), 5–57 | DOI
[30] Deligne P., “Le groupe fondamental de la droite projective moins trois points”, Galois Groups over $Q$ (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ., 16, Springer, New York, 1989, 79–297 | DOI
[31] Denham G., Schulze M., Walther U., “Matroid connectivity and singularities of configuration hypersurfaces”, Lett. Math. Phys., 111 (2021), 11, 67 pp., arXiv: 1902.06507 | DOI
[32] Drinfel'd V.G., “On quasitriangular quasi-{H}opf algebras and on a group that is closely connected with ${\rm Gal}(\overlineQ/Q)$”, Leningrad Math. J., 2 (1990), 829–860
[33] Furusho H., “Pentagon and hexagon equations”, Ann. of Math., 171 (2010), 545–556, arXiv: math.QA/0702128 | DOI
[34] Getzler E., Kapranov M. M., “Modular operads”, Compositio Math., 110 (1998), 65–126, arXiv: dg-ga/9408003 | DOI
[35] Golz M., “Dodgson polynomial identities”, Commun. Number Theory Phys., 13 (2019), 667–723, arXiv: 1810.06220 | DOI
[36] Grothendieck A., “On the de Rham cohomology of algebraic varieties”, Inst. Hautes Études Sci. Publ. Math., 29 (1966), 95–103 | DOI
[37] Kaufmann R. M., Ward B. C., Feynman categories, Astérisque, 387, 2017, vii+161 pp.
[38] Khoroshkin A., Willwacher T., Živković M., “Differentials on graph complexes”, Adv. Math., 307 (2017), 1184–1214, arXiv: 1411.2369 | DOI
[39] Kontsevich M., “Formal (non)commutative symplectic geometry”, The Gelfand Mathematical Seminars, 1990–1992, Birkhäuser Boston, Boston, MA, 1993, 173–187 | DOI
[40] Kontsevich M., “Derived Grothendieck–Teichmüller group and graph complexes [after T Willwacher]”, Astérisque, 407, no. 1126, 2019, 183–211
[41] Looijenga E., “Cohomology of ${\mathcal M}_3$ and ${\mathcal M}^1_3$”, Mapping Class Groups and Moduli Spaces of Riemann Surfaces (Göttingen, 1991/Seattle, WA, 1991), Contemp. Math., 150, Amer. Math. Soc., Providence, RI, 1993, 205–228 | DOI
[42] Maurer S. B., “Matrix generalizations of some theorems on trees, cycles and cocycles in graphs”, SIAM J. Appl. Math., 30 (1976), 143–148 | DOI
[43] Nagnibeda T., “The Jacobian of a finite graph”, Harmonic Functions on Trees and Buildings (New York, 1995), Contemp. Math., 206, Amer. Math. Soc., Providence, RI, 1997, 149–151 | DOI
[44] Panzer E., “Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals”, Comput. Phys. Comm., 188 (2015), 148–166, arXiv: 1403.3385 | DOI
[45] Rosset S., “A new proof of the Amitsur–Levitski identity”, Israel J. Math., 23 (1976), 187–188 | DOI
[46] Schnetz O., “Quantum periods: a census of $\phi^4$-transcendentals”, Commun. Number Theory Phys., 4 (2010), 1–47, arXiv: 0801.2856 | DOI
[47] Siegel C. L., “The volume of the fundamental domain for some infinite groups”, Trans. Amer. Math. Soc., 39 (1936), 209–218 | DOI
[48] Whitney H., “On the abstract properties of linear dependence”, Amer. J. Math., 57 (1935), 509–533 | DOI
[49] Willwacher T., “M. Kontsevich's graph complex and the Grothendieck–Teichmüller Lie algebra”, Invent. Math., 200 (2015), 671–760, arXiv: 1009.1654 | DOI
[50] Willwacher T., Živković M., “Multiple edges in M Kontsevich's graph complexes and computations of the dimensions and Euler characteristics”, Adv. Math., 272 (2015), 553–578, arXiv: 1401.4974 | DOI