@article{SIGMA_2021_17_a101,
author = {Claude LeBrun},
title = {Twistors, {Self-Duality,} and {Spin}${}^c$ {Structures}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a101/}
}
Claude LeBrun. Twistors, Self-Duality, and Spin${}^c$ Structures. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a101/
[1] Atiyah M. F., Hitchin N. J., Singer I. M., “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London Ser. A, 362 (1978), 425–461 | DOI
[2] Gompf R. E., Stipsicz A. I., $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, 20, Amer. Math. Soc., Providence, RI, 1999 | DOI
[3] Hirzebruch F., Hopf H., “Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten”, Math. Ann., 136 (1958), 156–172 | DOI
[4] Hitchin N. J., “Kählerian twistor spaces”, Proc. London Math. Soc., 43 (1981), 133–150 | DOI
[5] Killingback T. P., Rees E. G., “${\rm Spin}^c$ structures on manifolds”, Classical Quantum Gravity, 2 (1985), 433–438 | DOI
[6] Milnor J. W., Stasheff J. D., Characteristic classes, Annals of Mathematics Studies, 76, Princeton University Press, Princeton, N.J., 1974
[7] Penrose R., “Nonlinear gravitons and curved twistor theory”, Gen. Relativity Gravitation, 7 (1976), 31–52 | DOI
[8] Penrose R., Rindler W., Spinors and space-time, v. 2, Cambridge Monographs on Mathematical Physics, Spinor and twistor methods in space-time geometry, Cambridge University Press, Cambridge, 1986 | DOI
[9] Whitney H., “On the topology of differentiable manifolds”, Lectures in Topology, University of Michigan Press, Ann Arbor, Mich., 1941, 101–141