Mots-clés : Lie coalgebras
@article{SIGMA_2021_17_a100,
author = {Hadleigh Frost},
title = {The {Algebraic} {Structure} of the {KLT} {Relations} for {Gauge} and {Gravity} {Tree} {Amplitudes}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a100/}
}
Hadleigh Frost. The Algebraic Structure of the KLT Relations for Gauge and Gravity Tree Amplitudes. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a100/
[1] Adamo T., Casali E., Roehrig K. A., Skinner D., “On tree amplitudes of supersymmetric Einstein–Yang–Mills theory”, J. High Energy Phys., 2015:12 (2015), 177, 14 pp., arXiv: 1507.02207 | DOI
[2] Bedford J., Brandhuber A., Spence B., Travaglini G., “A recursion relation for gravity amplitudes”, Nuclear Phys. B, 721 (2005), 98–110, arXiv: hep-th/0502146 | DOI
[3] Berends F. A., Giele W. T., “Recursive calculations for processes with $n$ gluons”, Nuclear Phys. B, 306 (1988), 759–808 | DOI
[4] Bern Z., Carrasco J. J.M., Johansson H., “New relations for gauge-theory amplitudes”, Phys. Rev. D, 78 (2008), 085011, 19 pp., arXiv: 0805.3993 | DOI
[5] Bjerrum-Bohr N. E.J., Bourjaily J. L., Damgaard P. H., Feng B., “Manifesting color-kinematics duality in the scattering equation formalism”, J. High Energy Phys., 2016:9 (2016), 094, 17 pp., arXiv: 1608.00006 | DOI
[6] Bjerrum-Bohr N. E.J., Damgaard P. H., Søndergaard T., Vanhove P., “The momentum kernel of gauge and gravity theories”, J. High Energy Phys., 2011:1 (2011), 001, 18 pp., arXiv: 1010.3933 | DOI
[7] Bjerrum-Bohr N. E.J., Damgaard P. H., Vanhove P., “Minimal basis for gauge theory amplitudes”, Phys. Rev. Lett., 103 (2009), 161602, 4 pp., arXiv: 0907.1425 | DOI
[8] Bridges E., Mafra C. R., “Algorithmic construction of SYM multiparticle superfields in the BCJ gauge”, J. High Energy Phys., 2019:10 (2019), 022, 35 pp., arXiv: 1906.12252 | DOI
[9] Brion M., Vergne M., “Arrangement of hyperplanes. I Rational functions and Jeffrey–Kirwan residue”, Ann. Sci. École Norm. Sup. (4), 32 (1999), 715–741, arXiv: math.DG/9903178 | DOI
[10] Brown F., Dupont C., “Single-valued integration and superstring amplitudes in genus zero”, Comm. Math. Phys., 382 (2021), 815–874, arXiv: 1910.01107 | DOI
[11] Cachazo F., Fundamental BCJ relation in ${\mathcal N}=4$ SYM from the connected formulation, arXiv: 1206.5970
[12] Cachazo F., He S., Yuan E. Y., “Scattering of massless Particles in arbitrary dimension”, Phys. Rev. Lett., 113 (2014), 171601, 4 pp., arXiv: 1307.2199 | DOI
[13] Cachazo F., He S., Yuan E. Y., “Scattering equations and matrices: from Einstein to Yang–Mills, DBI and NLSM”, J. High Energy Phys., 2015:7 (2015), 149, 43 pp., arXiv: 1412.3479 | DOI
[14] Cachazo F., Mason L., Skinner D., “Gravity in twistor space and its Grassmannian formulation”, SIGMA, 10 (2014), 051, 28 pp., arXiv: 1207.4712 | DOI
[15] Cachazo F., Skinner D., “Gravity from rational curves in twistor space”, Phys. Rev. Lett., 110 (2013), 161301, 4 pp., arXiv: 1207.0741 | DOI
[16] Carrasco J. J.M., Mafra C. R., Schlotterer O., “Abelian $Z$-theory: NLSM amplitudes and $\alpha'$-corrections from the open string”, J. High Energy Phys., 2017:6 (2017), 093, 31 pp., arXiv: 1608.02569 | DOI
[17] Chaiken S., Kleitman D. J., “Matrix tree theorems”, J. Combinatorial Theory Ser. A, 24 (1978), 377–381 | DOI
[18] Chen G., Johansson H., Teng F., Wang T., “Next-to-MHV Yang–Mills kinematic algebra”, J. High Energy Phys., 2021:10 (2021), 042, 54 pp., arXiv: 2104.12726 | DOI
[19] Cheung C., Shen C.-H., “Symmetry for flavor-kinematics duality from an action”, Phys. Rev. Lett., 118 (2017), 121601, 5 pp., arXiv: 1612.00868 | DOI
[20] Dolan L., Goddard P., “Proof of the formula of Cachazo, He and Yuan for Yang–Mills tree amplitudes in arbitrary dimension”, J. High Energy Phys., 2014:5 (2014), 010, 24 pp., arXiv: 1311.5200 | DOI
[21] Du Y.-J., Teng F., “BCJ numerators from reduced Pfaffian”, J. High Energy Phys., 2017:4 (2017), 033, 28 pp., arXiv: 1703.05717 | DOI
[22] Elvang H., Freedman D. Z., “Note on graviton MHV amplitudes”, J. High Energy Phys., 2008:5 (2008), 096, 11 pp., arXiv: 0710.1270 | DOI
[23] Frost H., Universal aspects of perturbative gauge theory amplitudes, Ph.D. Thesis, University of Oxford, 2020 https://ora.ox.ac.uk/objects/uuid:2b7fc6f9-ee97-40b0-9c14-1f29dfb916fc
[24] Frost H., Mafra C. R., Mason L., A Lie bracket for the momentum kernel, arXiv: 2012.00519
[25] Geyer Y., Ambitwistor strings: worldsheet approaches to perturbative quantum field theories, Ph.D. Thesis, University of Oxford, 2016 https://ora.ox.ac.uk/objects/uuid:ff543496-58bd-4818-ae0c-cf31eb349c90
[26] Geyer Y., Lipstein A. E., Mason L., “Ambitwistor strings in four dimensions”, Phys. Rev. Lett., 113 (2014), 081602, 5 pp., arXiv: 1404.6219 | DOI
[27] He S., Hou L., Tian J., Zhang Y., “Kinematic numerators from the worldsheet: cubic trees from labelled trees”, J. High Energy Phys., 2021:8 (2021), 118, 24 pp., arXiv: 2103.15810 | DOI
[28] Hodges A., A simple formula for gravitational MHV amplitudes, arXiv: 1204.1930
[29] Kapranov M., The geometry of scattering amplitudes, Talk at Banff Workshop “The Geometry of Scattering Amplitudes”, 2012
[30] Kawai H., Lewellen D. C., Tye S.-H.H., “A relation between tree amplitudes of closed and open strings”, Nuclear Phys. B, 269 (1986), 1–23 | DOI
[31] Kleiss R., Kuijf H., “Multigluon cross sections and 5-jet production at hadron colliders”, Nuclear Phys. B, 312 (1989), 616–644 | DOI
[32] Mafra C. R., Private correspondence, 2020
[33] Mafra C. R., Schlotterer O., “Multiparticle SYM equations of motion and pure spinor BRST blocks”, J. High Energy Phys., 2014:7 (2014), 153, 40 pp., arXiv: 1404.4986 | DOI
[34] Mafra C. R., Schlotterer O., “Berends–Giele recursions and the BCJ duality in superspace and components”, J. High Energy Phys., 2016:3 (2016), 097, 20 pp., arXiv: 1510.08846 | DOI
[35] Mafra C. R., Schlotterer O., “One-loop open-string integrals from differential equations: all-order $\alpha'$-expansions at $n$ points”, J. High Energy Phys., 2020:3 (2020), 007, 79 pp., arXiv: 1908.10830 | DOI
[36] Mason L., Skinner D., “Gravity, twistors and the MHV formalism”, Comm. Math. Phys., 294 (2010), 827–862, arXiv: 0808.3907 | DOI
[37] Mizera S., “Combinatorics and topology of Kawai–Lewellen–Tye relations”, J. High Energy Phys., 2017:8 (2017), 097, 54 pp., arXiv: 1706.08527 | DOI
[38] Mizera S., “Scattering amplitudes from intersection theory”, Phys. Rev. Lett., 120 (2018), 141602, 6 pp., arXiv: 1711.00469 | DOI
[39] Mizera S., Aspects of scattering amplitudes and moduli space localization, Springer Theses, Springer, Cham, 2020, arXiv: 1906.02099 | DOI
[40] Monteiro R., O'Connell D., “The kinematic algebras from the scattering equations”, J. High Energy Phys., 2014:3 (2014), 110, 28 pp., arXiv: 1311.1151 | DOI
[41] Reutenauer C., Free Lie algebras, London Mathematical Society Monographs. New Series, 7, The Clarendon Press, Oxford University Press, New York, 1993
[42] Roiban R., Spradlin M., Volovich A., “Tree-level $S$ matrix of Yang–Mills theory”, Phys. Rev. D, 70 (2004), 026009, 10 pp., arXiv: hep-th/0403190 | DOI
[43] Schechtman V. V., Varchenko A. N., “Arrangements of hyperplanes and Lie algebra homology”, Invent. Math., 106 (1991), 139–194 | DOI
[44] Schocker M., “Lie elements and Knuth relations”, Canad. J. Math., 56 (2004), 871–882, arXiv: math.RA/0209327 | DOI
[45] Stieberger S., Open closed vs. pure open string disk amplitudes, arXiv: 0907.2211
[46] 't Hooft G., “A planar diagram theory for strong interactions”, Nuclear Phys. B, 72 (1974), 461–473 | DOI