@article{SIGMA_2021_17_a10,
author = {Felipe Leitner},
title = {Invariant {Dirac} {Operators,} {Harmonic} {Spinors,} and {Vanishing} {Theorems} in {CR} {Geometry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a10/}
}
Felipe Leitner. Invariant Dirac Operators, Harmonic Spinors, and Vanishing Theorems in CR Geometry. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a10/
[1] Blair D. E., Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509, Springer-Verlag, Berlin – New York, 1976 | DOI | MR | Zbl
[2] Čap A., Gover A. R., “CR-tractors and the Fefferman space”, Indiana Univ. Math. J., 57 (2008), 2519–2570, arXiv: math.DG/0611938 | DOI | MR | Zbl
[3] Case J. S., Yang P., “A Paneitz-type operator for CR pluriharmonic functions”, Bull. Inst. Math. Acad. Sin. (N.S.), 8 (2013), 285–322, arXiv: 1309.2528 | MR | Zbl
[4] Folland G. B., Kohn J. J., The Neumann problem for the Cauchy–Riemann complex, Annals of Mathematics Studies, 75, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972 | MR | Zbl
[5] Hitchin N., “Harmonic spinors”, Adv. Math., 14 (1974), 1–55 | DOI | MR | Zbl
[6] Jerison D., Lee J. M., “The Yamabe problem on CR manifolds”, J. Differential Geom., 25 (1987), 167–197 | DOI | MR | Zbl
[7] Kohn J. J., “Boundaries of complex manifolds”, Proc. Conf. Complex Analysis (Minneapolis, 1964), Springer, Berlin, 1965, 81–94 | DOI | MR
[8] Kohn J. J., Rossi H., “On the extension of holomorphic functions from the boundary of a complex manifold”, Ann. of Math., 81 (1965), 451–472 | DOI | MR | Zbl
[9] Kordyukov Y. A., “Vanishing theorem for transverse Dirac operators on Riemannian foliations”, Ann. Global Anal. Geom., 34 (2008), 195–211, arXiv: 0708.1698 | DOI | MR | Zbl
[10] Lawson Jr. H.B., Michelsohn M. L., Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl
[11] Lee J. M., “Pseudo-Einstein structures on CR manifolds”, Amer. J. Math., 110 (1988), 157–178 | DOI | MR | Zbl
[12] Leitner F., “The first eigenvalue of the Kohn–Dirac operator on CR manifolds”, Differential Geom. Appl., 61 (2018), 97–132 | DOI | MR | Zbl
[13] Leitner F., “Parallel spinors and basic holonomy in pseudo-Hermitian geometry”, Ann. Global Anal. Geom., 55 (2019), 181–196 | DOI | MR | Zbl
[14] Lichnerowicz A., “Spineurs harmoniques”, C. R. Acad. Sci. Paris, 257 (1963), 7–9 | MR | Zbl
[15] Michelsohn M. L., “Clifford and spinor cohomology of Kähler manifolds”, Amer. J. Math., 102 (1980), 1083–1146 | DOI | MR | Zbl
[16] Morgan J. W., The Seiberg–Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes, 44, Princeton University Press, Princeton, NJ, 1996 | MR | Zbl
[17] Moroianu A., “On Kirchberg's inequality for compact Kähler manifolds of even complex dimension”, Ann. Global Anal. Geom., 15 (1997), 235–242 | DOI | MR | Zbl
[18] Petit R., “${\rm Spin}^c$-structures and Dirac operators on contact manifolds”, Differential Geom. Appl., 22 (2005), 229–252 | DOI | MR | Zbl
[19] Pilca M., “Kählerian twistor spinors”, Math. Z., 268 (2011), 223–255, arXiv: 0812.3315 | DOI | MR | Zbl
[20] Stadtmüller C., Horizontal Dirac operators in CR geometry, Ph.D. Thesis, Humboldt University Berlin, 2017 https://edoc.hu-berlin.de/handle/18452/18801
[21] Tanaka N., A differential geometric study on strongly pseudo-convex manifolds, Lectures in Mathematics, 9, Kinokuniya Book-Store Co., Ltd., Tokyo, 1975 | MR | Zbl
[22] Webster S. M., “Pseudo-Hermitian structures on a real hypersurface”, J. Differential Geometry, 13 (1978), 25–41 | DOI | MR | Zbl