Mots-clés : Painlevé II hierarchy
@article{SIGMA_2021_17_a1,
author = {Sofia Tarricone},
title = {A {Fully} {Noncommutative} {Painlev\'e} {II} {Hierarchy:} {Lax} {Pair} and {Solutions} {Related} to {Fredholm} {Determinants}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a1/}
}
TY - JOUR AU - Sofia Tarricone TI - A Fully Noncommutative Painlevé II Hierarchy: Lax Pair and Solutions Related to Fredholm Determinants JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a1/ LA - en ID - SIGMA_2021_17_a1 ER -
%0 Journal Article %A Sofia Tarricone %T A Fully Noncommutative Painlevé II Hierarchy: Lax Pair and Solutions Related to Fredholm Determinants %J Symmetry, integrability and geometry: methods and applications %D 2021 %V 17 %U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a1/ %G en %F SIGMA_2021_17_a1
Sofia Tarricone. A Fully Noncommutative Painlevé II Hierarchy: Lax Pair and Solutions Related to Fredholm Determinants. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a1/
[1] Baik J., Deift P., Suidan T., Combinatorics and random matrix theory, Graduate Studies in Mathematics, 172, Amer. Math. Soc., Providence, RI, 2016 | DOI | MR | Zbl
[2] Basor E. L., Widom H., “Determinants of Airy operators and applications to random matrices”, J. Statist. Phys., 96 (1999), 1–20, arXiv: math.FA/9812043 | DOI | MR | Zbl
[3] Bertola M., “The dependence on the monodromy data of the isomonodromic tau function”, Comm. Math. Phys., 294 (2010), 539–579, arXiv: 0902.4716 | DOI | MR | Zbl
[4] Bertola M., Cafasso M., “Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation”, Comm. Math. Phys., 309 (2012), 793–833, arXiv: 1101.3997 | DOI | MR | Zbl
[5] Cafasso M., Claeys T., Girotti M., “Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes”, Int. Math. Res. Not. (to appear) , arXiv: 1902.05595 | DOI
[6] Clarkson P. A., Joshi N., Mazzocco M., “The Lax pair for the mKdV hierarchy”, Théories asymptotiques et équations de Painlevé, Sémin. Congr., 14, Soc. Math. France, Paris, 2006, 53–64 | MR | Zbl
[7] Clarkson P. A., McLeod J. B., “A connection formula for the second Painlevé transcendent”, Arch. Rational Mech. Anal., 103 (1988), 97–138 | DOI | MR | Zbl
[8] Deift P. A., Zhou X., “Asymptotics for the Painlevé II equation”, Comm. Pure Appl. Math., 48 (1995), 277–337 | DOI | MR | Zbl
[9] Gordoa P. R., Pickering A., Zhu Z. N., “On matrix Painlevé hierarchies”, J. Differential Equations, 261 (2016), 1128–1175 | DOI | MR | Zbl
[10] Hastings S. P., McLeod J. B., “A boundary value problem associated with the second Painlevé transcendent and the Korteweg–de Vries equation”, Arch. Rational Mech. Anal., 73 (1980), 31–51 | DOI | MR | Zbl
[11] Its A. R., “Large $N$ asymptotics in random matrices: the Riemann–Hilbert approach”, Random Matrices, Random Processes and Integrable Systems, CRM Ser. Math. Phys., Springer, New York, 2011, 351–413 | DOI | MR | Zbl
[12] Its A. R., Izergin A. G., Korepin V. E., Slavnov N. A., “Differential equations for quantum correlation functions”, Internat. J. Modern Phys. B, 4 (1990), 1003–1037 | DOI | MR | Zbl
[13] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl
[14] Johansson K., “Shape fluctuations and random matrices”, Comm. Math. Phys., 209 (2000), 437–476, arXiv: math.CO/9903134 | DOI | MR | Zbl
[15] Johansson K., “Random matrices and determinantal processes”, Mathematical Statistical Physics, Elsevier B. V., Amsterdam, 2006, 1–55, arXiv: math-ph/0510038 | DOI | MR
[16] Le Doussal P., Majumdar S. N., Schehr G., “Multicritical edge statistics for the momenta of fermions in nonharmonic traps”, Phys. Rev. Lett., 121 (2018), 030603, 7 pp., arXiv: 1802.06436 | DOI
[17] Miura R. M., Lange C. G., “Particular solutions of forced generalized Airy equations”, J. Math. Anal. Appl., 109 (1985), 303–310 | DOI | MR | Zbl
[18] Olver P. J., Sokolov V. V., “Integrable evolution equations on associative algebras”, Comm. Math. Phys., 193 (1998), 245–268 | DOI | MR | Zbl
[19] Olver P. J., Wang J. P., “Classification of integrable one-component systems on associative algebras”, Proc. London Math. Soc., 81 (2000), 566–586 | DOI | MR | Zbl
[20] Retakh V., Rubtsov V., “Noncommutative Toda chains, Hankel quasideterminants and the Painlevé II equation”, J. Phys. A: Math. Theor., 43 (2010), 505204, 13 pp., arXiv: 1007.4168 | DOI | MR | Zbl
[21] Soshnikov A., “Determinantal random point fields”, Russian Math. Surveys, 55 (2000), 923–975, arXiv: math.PR/0002099 | DOI | MR | Zbl
[22] Tracy C. A., Widom H., “Level-spacing distributions and the Airy kernel”, Comm. Math. Phys., 159 (1994), 151–174, arXiv: hep-th/9211141 | DOI | MR | Zbl
[23] Tracy C. A., Widom H., “Distribution functions for largest eigenvalues and their applications”, Proceedings of the International Congress of Mathematicians (Beijing, 2002), v. I, Higher Ed. Press, Beijing, 2002, 587–596, arXiv: math-ph/0210034 | MR | Zbl