With Wronskian through the Looking Glass
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work of Mukhin and Varchenko from 2002 there was introduced a Wronskian map from the variety of full flags in a finite dimensional vector space into a product of projective spaces. We establish a precise relationship between this map and the Plücker map. This allows us to recover the result of Varchenko and Wright saying that the polynomials appearing in the image of the Wronsky map are the initial values of the tau-functions for the Kadomtsev–Petviashvili hierarchy.
Keywords: MKP hierarchies, critical points, tau-function, Wronskian.
@article{SIGMA_2021_17_a0,
     author = {Vassily Gorbounov and Vadim Schechtman},
     title = {With {Wronskian} through the {Looking} {Glass}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a0/}
}
TY  - JOUR
AU  - Vassily Gorbounov
AU  - Vadim Schechtman
TI  - With Wronskian through the Looking Glass
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a0/
LA  - en
ID  - SIGMA_2021_17_a0
ER  - 
%0 Journal Article
%A Vassily Gorbounov
%A Vadim Schechtman
%T With Wronskian through the Looking Glass
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a0/
%G en
%F SIGMA_2021_17_a0
Vassily Gorbounov; Vadim Schechtman. With Wronskian through the Looking Glass. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a0/

[1] Benkart G., Meinel J., “The center of the affine nilTemperley–Lieb algebra”, Math. Z., 284 (2016), 413–439, arXiv: 1505.02544 | DOI | MR | Zbl

[2] Berenstein A., Fomin S., Zelevinsky A., “Parametrizations of canonical bases and totally positive matrices”, Adv. Math., 122 (1996), 49–149 | DOI | MR | Zbl

[3] Crum M. M., “Associated Sturm–Liouville systems”, Quart. J. Math. Oxford Ser. (2), 6 (1955), 121–127 | DOI | MR

[4] Eremenko A., Gabrielov A., “Degrees of real Wronski maps”, Discrete Comput. Geom., 28 (2002), 331–347, arXiv: math.AG/0108133 | DOI | MR | Zbl

[5] Fomin S., Zelevinsky A., “Recognizing Schubert cells”, J. Algebraic Combin., 12 (2000), 37–57, arXiv: math.CO/9807079 | DOI | MR | Zbl

[6] Goldberg L. R., “Catalan numbers and branched coverings by the Riemann sphere”, Adv. Math., 85 (1991), 129–144 | DOI | MR | Zbl

[7] Kac V. G., Peterson D. H., Lectures on the infinite wedge-representation and the MKP hierarchy, unpublished

[8] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR

[9] Mukhin E., Varchenko A., “Critical points of master functions and flag varieties”, Commun. Contemp. Math., 6 (2004), 111–163, arXiv: math.AG/0209017 | DOI | MR | Zbl

[10] Schechtman V., Varchenko A., “Positive populations”, J. Singul., 20 (2020), 342–370, arXiv: 1912.11895 | DOI | MR

[11] Segal G., Wilson G., “Loop groups and equations of KdV type”, Inst. Hautes Études Sci. Publ. Math., 61 (1985), 5–65 | DOI | MR | Zbl

[12] Varchenko A., Wright D., “Critical points of master functions and integrable hierarchies”, Adv. Math., 263 (2014), 178–229, arXiv: 1207.2274 | DOI | MR | Zbl