@article{SIGMA_2020_16_a99,
author = {Roozbeh Gharakhloo and Alexander Its},
title = {A {Riemann{\textendash}Hilbert} {Approach} to {Asymptotic} {Analysis} of {Toeplitz+Hankel} {Determinants}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a99/}
}
TY - JOUR AU - Roozbeh Gharakhloo AU - Alexander Its TI - A Riemann–Hilbert Approach to Asymptotic Analysis of Toeplitz+Hankel Determinants JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a99/ LA - en ID - SIGMA_2020_16_a99 ER -
%0 Journal Article %A Roozbeh Gharakhloo %A Alexander Its %T A Riemann–Hilbert Approach to Asymptotic Analysis of Toeplitz+Hankel Determinants %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a99/ %G en %F SIGMA_2020_16_a99
Roozbeh Gharakhloo; Alexander Its. A Riemann–Hilbert Approach to Asymptotic Analysis of Toeplitz+Hankel Determinants. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a99/
[1] Baik J., Deift P., Johansson K., “On the distribution of the length of the longest increasing subsequence of random permutations”, J. Amer. Math. Soc., 12 (1999), 1119–1178, arXiv: math.CO/9810105 | DOI | MR | Zbl
[2] Basor E., Ehrhardt T., “Asymptotic formulas for determinants of a special class of Toeplitz + Hankel matrices”, Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics, Oper. Theory Adv. Appl., 259, Birkhäuser/Springer, Cham, 2017, 125–154, arXiv: 1603.00506 | DOI | MR | Zbl
[3] Basor E. L., Ehrhardt T., “Asymptotic formulas for determinants of a sum of finite Toeplitz and Hankel matrices”, Math. Nachr., 228 (2001), 5–45, arXiv: math.FA/9809088 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[4] Basor E. L., Ehrhardt T., “Asymptotic formulas for the determinants of symmetric Toeplitz plus Hankel matrices”, Toeplitz Matrices and Singular Integral Equations (Pobershau, 2001), Oper. Theory Adv. Appl., 135, Birkhäuser, Basel, 2002, 61–90, arXiv: math.FA/0202078 | DOI | MR | Zbl
[5] Basor E. L., Ehrhardt T., “Determinant computations for some classes of Toeplitz–Hankel matrices”, Oper. Matrices, 3 (2009), 167–186, arXiv: 0804.3073 | DOI | MR | Zbl
[6] Basor E. L., Ehrhardt T., “Fredholm and invertibility theory for a special class of Toeplitz + Hankel operators”, J. Spectr. Theory, 3 (2013), 171–214, arXiv: 1110.0577 | DOI | MR | Zbl
[7] Böttcher A., Grudsky S. M., Spectral properties of banded Toeplitz matrices, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005 | DOI | MR | Zbl
[8] Böttcher A., Silbermann B., Introduction to large truncated Toeplitz matrices, Universitext, Springer-Verlag, New York, 1999 | DOI | MR | Zbl
[9] Böttcher A., Silbermann B., Analysis of Toeplitz operators, Springer Monographs in Mathematics, 2nd ed., Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl
[10] Charlier C., “Asymptotics of Hankel determinants with a one-cut regular potential and Fisher–Hartwig singularities”, Int. Math. Res. Not., 2019 (2019), 7515–7576, arXiv: 1706.03579 | DOI | MR
[11] Charlier C., Gharakhloo R., Asymptotics of Hankel determinants with a Laguerre-type or Jacobi-type potential and Fisher–Hartwig singularities, arXiv: 1902.08162
[12] Chelkak D., Hongler C., Mahfouf R., Magnetization in the zig-zag layered Ising model and orthogonal polynomials, arXiv: 1904.09168
[13] Deift P., Its A., Krasovsky I., “Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher–Hartwig singularities”, Ann. of Math., 174 (2011), 1243–1299, arXiv: 0905.0443 | DOI | MR | Zbl
[14] Deift P., Its A., Krasovsky I., “Eigenvalues of Toeplitz matrices in the bulk of the spectrum”, Bull. Inst. Math. Acad. Sin. (N.S.), 7 (2012), 437–461, arXiv: 1110.4089 | MR | Zbl
[15] Deift P., Its A., Krasovsky I., “Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results”, Comm. Pure Appl. Math., 66 (2013), 1360–1438, arXiv: 1207.4990 | DOI | MR | Zbl
[16] Deift P., Kriecherbauer T., McLaughlin K. T.-R., Venakides S., Zhou X., “Strong asymptotics of orthogonal polynomials with respect to exponential weights”, Comm. Pure Appl. Math., 52 (1999), 1491–1552 | 3.0.CO;2-# class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[17] Deift P., Kriecherbauer T., McLaughlin K. T.-R., Venakides S., Zhou X., “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[18] Fedele E., Gebert M., “On determinants identity minus Hankel matrix”, Bull. Lond. Math. Soc., 51 (2019), 751–764, arXiv: 1808.08009 | DOI | MR | Zbl
[19] Its A., Krasovsky I., “Hankel determinant and orthogonal polynomials for the Gaussian weight with a jump, in Integrable Systems and Random Matrices”, Contemp. Math., 458, Amer. Math. Soc., Providence, RI, 2008, 215–247, arXiv: 0706.3192 | DOI | MR | Zbl
[20] Krasovsky I., “Correlations of the characteristic polynomials in the Gaussian unitary ensemble or a singular Hankel determinant”, Duke Math. J., 139 (2007), 581–619, arXiv: math-ph/0411016 | DOI | MR | Zbl
[21] Krasovsky I., “Aspects of Toeplitz determinants”, Random Walks, Boundaries and Spectra, Progr. Probab., 64, Birkhäuser/Springer Basel AG, Basel, 2011, 305–324, arXiv: 1007.1128 | DOI | MR | Zbl